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ABSTRACT

The interactions between dispersed secondphase particles or

inclusions and slip dislocations exert a large influence upon the

strength and ductility of crystalline solids. An important example of

such interactions may be represented by a planar array of slip dislo-

cations which has been blocked by, and thus has piled up against_ the

second phase. The present study is an examination of the effects of

second phase size and rigidity upon the stresses associated with such

blocked dislocation arrays.

Using the method of continuously distributed dislocations,

exact analytical solutions are obtained for the stress fields associated

with

(i) a screw dislocation pileup at a rigid circular inclusion

(2) a screw dislocation pileup at a semi-infinite secondphase

of finite rigidity

(3) a screw dislocation pileup at a circular inclusion of finite

rigidity.

The local stresses near the pileup tip are shownto be of the form

_R "4R_g L > 2T..~T I--7) , --
m$ p R

Ti C p R
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where L is the slip line length, R is the radius of the second phase,

p is the radial distance from the pileup tip, and T is the effective

applied longitudinal shear stress, g, the strength of the pileup tip

stress singularity, is a function of the elastic constants and is given

by

2sinl Ol0 < g = _ i + G < i ,

where G2 and GI are the second phase and matrix shear moduli,

respectively. The physical significance of the above results is discussed

in terms of image dislocation forces induced by the presence of a second

phase ahead of a slip band.

An exact solution for the stresses generated by an infinite

sequence of parallel screw dislocations piled up against an elastic half-

plane of finite rigidity is also presented. The local stresses near the

pileup tips are given by

2h)g h < 2

T 2L)g h > 5
_ij~ (Z- ' Z

where h is the separation distance between the slip bands. In addition,

the more difficult plane strain problem involving an edge dislocation

pileup against an elastic half-plane is formulated, and a method for

determining the pileup tip stress singularity is discussed.
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The results obtained from the above calculations are used to

discuss relaxation of the pileup stresses by fracture initiation in the

second phase and by cross-slip of the leading array dislocations around

the second phase. Fracture initiation in a second phase which is

harder than the matrix (G2 _ GI) can only be predicted by an atomistic

modification of the Griffith-lrwin-Stroh criterion used in single phase

elasticity. It is shownthat cross-slip should be the more favorable

relaxation modewhen L/R _ 2, and that fracture initiation should be

possible only when L/R _ 2. In typical two-phase systems this analysis

predicts that fracture initiation in the secondphase should be possible

only when the inclusion diameter is greater than about one micron.
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CHAPTER I

INTRODUCTION

i. Purpose of the Investigation

Dispersed second phase particles and non-metallic inclusions

exert a large influence upon the mechanical properties of materials°

In addition to increasing the yield strength by raising the stress

necessary to move dislocations through the matrix, the presence of d_s-

persed phases and inclusions affects the fracture behavior of these

materials by providing sites for void formation via particle or particle-

interface cracking at the tip of a blocked slip band. Under applied

stresses these voids grow and coalesce, causing fracture at large

plastic strains.

Any detailed analysis of the mechanical properties of real

materials must therefore include a study of the interactions between

slip bands (and cracks) and hard particles, since these interactions

play an important role in determining strength and ductility° To a

first approximation the slip band--particle interaction may be repre-

sented by a planar array of dislocations which has been blocked by_ and

thus piled up against, the barrier.

Before one can investigate the interesting problems of particle

fracture, particle interface fractur% or cross slip of the piled up

dislocations over the barrier, one must first determine the stress
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distribution associated with such blocked arrays of dislocations as a

function of particle shape, size, and rigidity. An analytical treatment

of this problem requires, in turn, the selection of an inhomogeneity

shape which allows a mathematical solution to be obtained and is at the

sametime a reasonable physical choice° Having chosen the shape, the

effect of the remaining variables, size and rigidity (elastic constants),

can then be examined° This examination is the subject of the present

investigation.

The technique which shall be used to examine the stress fields

associated with distributions of dislocations in two phase materials is

the method of continuously distributed dislocations° As a meansof in-

troduction to this technique, the following two sections will present

certain features of the theory of isolated elastic dislocations in single

and two phase media_ the continuous distribution technique is then re-

viewed in the latter sections of this chapter° Specific problems in L

volving arrays of screw and edge dislocations in heterogeneous materials

are presented in Chapters II through VI°

2. The Dislocation as the Green's Function for Internal Stress

The concept of a dislocation, as presented in elementary texts

on elasticity and plasticity of solids, is one of a solid body which has

been cut _long someinterior surface Z ; the two new surfaces formed by

the cutting process are then displaced relative to one another by a

rigid body motion (1) (if we wish to speak of crystal dislocations) and
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then welded together, leaving the body in a state of residual or internal

stress in the absence of applied external tractions and body forces° One

may, however, give an alternate, more compact definition of a dislocation°

Such a definition proves to be quite advantageous, since it allows us to

easily see the one-to-one correspondence between an electrostatic line

charge in a dielectric mediumand a stationary screw dislocation in an
(2)

elastic medium° Therefore, let us define a dislocation in the

following manner_

'_ dislocation is the Green's function for internal stress°"

In order to show that the above statement constitutes an ade-.

quate definition of a dislocation_ consider an infinitely long, straight_

non-radiatlng line of charge -q per unit length in free space° Orient

a right-hand x-y-z Cartesian frame in this space so that the z-axis

coincides with the line charge° Translational invariance in the z-di-

rection dictates that the electrostatic potential _ be a function only

of x and yo Thus, _ satisfies

_x 2 _y2 =

(1o2-1)

where r is the polar radius vector from the line source to any field

point, and $(_) is the Dirac delta function° If we stipulate that

the applied electric field is zero, then the solution _ is the

familiar logarithmic potential or Green's function for the two dimen-.

sional Laplace equation..:
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The associated internal electric field, _, is radial and evidences radial

symmetryabout the line source, i oeo,

-_ _q_ r
_'= - 2_ ll'P_ (To2-3)

Thus, even in the absence of an applied electric field, an internal field

exists due to the presence of the singular line source.

That a dislocation displays the character of a Green's function

for internal stress is now obvious° A solid containing a dislocation

possesses an associated internal stress field even though external surface

tractions and gravity forces are absent. The electrostatic line charge-

elastostatic screw dislocation analogy is most easily seen by considering

the complex Green's function, G*(_), for the two dimensional Laplace

equati on

G*(_) = i in _ , (Io2-4)

where denotes a field point in complex notation, ioeo,

ie
: x + iy : re

_x 2171: 2 +y

0 __ e : arg(_) __ 2_.

CZo2-5)

Separating G*(_) into its real and imaginary parts,

G*(C)= ¢(x,y)+ i_(_,y)_-_ {lnl_l + ie_o 1o2-6)
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Hence, the real part of G*(_) corresponds to the electrostatic potential

of a singular line source in free space, and the imaginary part of G*(_)

represents the elastostatic displacement field of a screw dislocation of

strength q at the origin in an infinite isotropic medium3 (I) these two

fields are thus conjugate harmonic functions. One will note that the

branch of the logarithmic function given in Eq. (1.2-5) is an arbitrary

choice. Any branch

e 0 _ e = arg(_) _ a 0 + 2_ (1o2-7)

could have been taken to make the logarithm a single-valued function°

This freedom in the choice of branch cut is the mathematical equivalent

of the physical statement that the screw dislocation may be defined inde-

pendent of the cutting surface Zo

The two dimensional form of Gauss' Law of electrostatics is

implicit in Eq. (1.2-1). Integrating both sides of (1o2-1) over a two-

dimensional domain pierced by the line singularity and applying Green's

Theorem, one finds that

f _n ds = q . (Io2-8)

C

_n denotes differentiation with respect to the outward normal to a

closed curve C encircling the line soure% and ds is an elemental

arc of C. Considering G*(_), one notes that

f _w (Io2_9)_ds=q;
C

_s denotes the tangential derivative along a closed curve C encircling

the line singularity. Equation (1.2-9) is the familiar law of the Burgers'

circuit in dislocation theory.
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One could equally well have chosen to identify the screw dis-

location as the elastostatic analog of a vortex line in fluid flow, in

which case _ and w, the real and imaginary parts of the Green's

function G*(_), would be identified as the potential and stream func-

tions, respectively, for the vortex. (3) The Burgers' circuit law then

becomes the analog of the circulation integral taken around the vortex°

The edge dislocation is likewise a Green's function for internal

stress. However, the stress field associated with a straight edge dis-

location is derived from an Airy stress function satisfying a bipotential,

not a potential, equation. The bipotential Green's function is inter-

Pretedphysically as a concentrated force. Consequently, edge disloca-

tion monopoles, dipoles, quadrupoles, and higher order multipoles are

equivalent to concentrated forces, couples, double couples, etco in the

interior of an elastic solid.

The electrostatic analogy is useful when discussing screw dis-

locations in inhomogeneous elastic media° If one can find a solution or

method of solution in the literature for an electrostatic line charge

(or point charge in two dimensions) in an inhomogeneous dielectric medium

(and many such solutions are available), the corresponding boundary value

problem involving a screw dislocation in an inhomogeneous elastic medium

may be solved in a straightforward manner, since the displacement field

of the screw is merely the conjugate harmonic function corresponding to

the appropriate electrostatic potential. Often the conjugate harmonic

function is easily constructe_ by the method of images, provided the

boundaries involved in the problem are simple geometric shapes (circular

arcs and/or straight lines).
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3. Previous Treatments of Single Dislocations in Elastic Media

ao Screw Dislocations

Consider a bimetallic medium(Figure I-i) composedof two elastic

half-planes welded together at x = O. The shear modulus is GI if

x > 0 and is G2 if x < 0o Let a single right-hand screw dislocation

of Burgers' vector b (parallel to the z-direction) be situated in

x > 0 at (t,O)o Assumingperfect bonding at the weld, so that _xz

and the z-component of the displacement field are continuous at x = O_

A. K. Head(4) in 1953 found the stress field of the screw to be given

by •

T
XZ

y albK Y x > o
2 2_: )2 22_ (x-t) 2 + y (x+t + y

Gb

i (i + K) Y
= - --2_ x_t_2) 2( + y

x<O

Glb x-t Glb x+t

Tyz = 2--_(x_t)2 2 + -_ K 2+ y (x+t) 2 + y

x>O

Glb x-t
_ (i + K) ; x < o

2
2_ (x-t)2 + Y •

Zo3-i)

where

G2 - G I

G2 + G I
Io3-2)

The solution may be constructed by referring to the analogous

electostatic problem. (5) In the region x > 0 the stress field is

the same as that in an infinite medium of shear modulus GI containing



Y

G 2

(-t,O)

_/IMAGE SCREW OF

STRENGTH Kb

X<O =

G
I

SCREW DISLOCATION

OF STRENGTH b

]
(t,O)

i

WELD

= X>O

r X

Figure l-l: Schematic illustration of a screw dislocation

in a bimetallic elastic medium and its induced

image.
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the real screw dislocation at (%0) and a virtual or image screw dis-

location of Burgers' vector Kb located at (-%0)° When K > 0

(a2 > GI) , the screw dislocation is repulsed from the boundary x = 0

by this "image force"° If K < 0 (G2 < GI) , the image force attracts

the dislocation toward the weld. Head presented the above solution as

a model for the interaction of a grain boundary with a dislocation_ two

adjacent grains in a polycrystalline sample may appear to have different

shear moduli because of crystallographic orientation differences with

respect to the direction of imposed deformation (in a tensile test_

the specimen tensile axis)°

The more general case of a screw dislocation exterior to a

circular cylindrical inclusion has been treated by Dundurso (6) Consider

the infinite two-phase elastic medium depicted in Figure 1-2o Region 2

is a circular cylindrical inclusion of radius R and shear modulus

G2 which is imbedded in a matrix of shear modulus GIO The cylinder

is infinitely long in the z-direction with the z-axis coinciding with

the cylinder axis. Since the problem to be formulated will be inde-

pendent of z, only the x-y plane section in Figure 1-2 need be con-

sidered° The elastic displacement field w(x,y) of a straight screw

(parallel to the z-axis) located at.dislocation of Burgers _ vector b

(t,0) in the matrix is:

b

w = _ [e I + K(e 2 - (9)} ,_

b
= r.(l-K)e I +

t
x +y _>

2 2 2
x +y __R

(Zo3-3)
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Y

REGION I

(MAT RI X )

GI

REGION 2 _'_- G2_
(INCLUSION)

SCREW DISLOCA-

TION OF STRENGTH

b AT (1",0)

-/

.-_X

Figure 1-2: Schematic illustration of a screw dislocation exterior

to a circular inclusion of shear modulus G 2 imbedded
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where
G - G
2 i

K -

G2 + GI

-l Ze = tan
X

eI = tan -I x-t

e = tan -I ¥

2 x- (f/t)

(z °3-4)

The associated stress field of the dislocation is then:

T = Y ,, +_ Y Y

x_t)2 2 R2/t)2 2 2 2 'xz 2_ ( + y (x- + y x + y

2 2 _);(x +y >

Glb2_ _ 2 ' 2 R2) ,(i+_) )_ (x2 + y < o
(x-t + y

Glb _ x-t [ X - R2/t x ]}
= -- )'2 2 + K R2/t)2 2 - 2 2 'Tyz 2_ (x-t + y (x- + y x + y

(x2 + y2> R2);

alb 2 R2)
- 2_ (l+g) x-t (x2 + Y <

(x_t)2 + y2 '

(m.3-5)

Perfect interface bonding has been assumed so that T and w are
rz

2 2 2
continuous across the interface x + y = R . With these boundary

conditions the stress field in the matrix is equivalent to the stress

ii



field in an infinite homogeneousmediumof shear modulus GI containing

the real dislocation at (t,0) and two image dislocations at (R2/t,0)

and the origin whose Burgers' vectors are _b and -gb_ respectively

(Figure 1-3). The dislocation is attracted to the inclusion by the

image forces when _ _ 0 and repelled when g _ 0. As R _ the

second phase becomesa half-plane, and the distance between the image

dislocation at the origin and the interface becomesinfinite. Thus,

the dislocated half-plane problem is characterized by only a single

image dislocation (Eq. 1.3-1 ) .

The need for a pair of image dislocations of opposite strength

is most easily seen by considering the Burgers' circuits depicted in

Figure 1-4. The Burgers' circuit CI yields a closure failure b as

required, since CI encircles only the real dislocation# the circuit

C2 yields zero closure failure since the closure failures of the two

image dislocations cancel one another. Similar reasoning shows that

the circuit C3 yields closure failure b as required. Whenformu-

lating more general problems involving a dislocated elastic matrix

containing inclusions of finite size, one can expect that the image

dislocation systems will involve pairs of opposite strength monopoles

and even order multipoles, since these types of image systems auto-

matically insure that Burgers' circuits taken in the multiply-connected

matrix will yield the correct closure failures.

Knowing the solution for the screw dislocation exterior to the

circular inclusion, the solution for the dislocation inside the in-

clusion maybe obtained by conformal mapping. The inversion mapping

12
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in a dislocated matrix containing a circula_ inclusion.
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p__
= R-/_, where (z = x + iy, maps the inclusion into the matrix and

vice-versa. The necessary calculations are summarized in Appendix A o

For the screw dislocation located at (t,0) inside a circular inclusion

of shear modulus G I imbedded in a matrix of shear modulus G2 the

displacement field is

b {eI + Ke2]

b

= _2_t -" "[(1-K]el+ Ke + g_]

2 2 R2x +y < ;

2 2 2
x +y _>R ,

i°3-6)

and the corresponding stresses are

°P{- Y +

)2 2xz 2_ (x-t + y
2 '

(x-R2/t) 2 * y

G2b { Y 2
2_ (l-K) (x-t) 2 + Y

+ 2 2 '
x +y

Glb {( x-t- 2 +K
Tyz 2_ x-t)2 + Y

x- R2/t }
+ y2 ,

G2b { x-t
2_ (l-K) [)'x-t'2 2

+y

+K x}2 2 '
x +y

where

81 = tan -I _Y__
x-t

8
2

= tan -I y

x -

8 = tan -I Z
x

2 2 R2x +y

2 2 2
x +y >R

2 2 R2x +y <__

2 2
x +y _>R 2

Io3-7)

1o3-8)
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Hence, the stress field in the dislocated inclusion is equivalent to

the stress field in an infinite medium of shear modulus GI containing

the real dislocation at (t, 0) and an image dislocation of strength

gb at the inverse point (R2/t,0) (Figure 1-5)o

The problem of a tri-metal (Figure 1-6) containing a screw dis-

location has been treated by Head, (4) Chou, (7) and the author. (8) The

results are quite lengthy and shall not be reproduced here° It is

worth noting that the tri-metallic problem (of which a surface oxide

layer on a metal (4) is a special case) differs from the previously

discussed solutions in that infinite sets of image dislocations are

required to describe the internal stress state. Chou (9) has also

treated the case of a screw dislocation in a wedge-shape medium (Figure

1-7) by a conformal mapping technique. When the wedge angle is equal

to 2_/k_ where k is integral_ k-i image dislocations are sufficient

to describe the stress state. When k is non-integral_ it is probable

that the stress state can be described either by a contour integral

or by a technique attributed to Sommerfeld (I0) (an infinite set of

images situated on Riemann surfaces above and below the plane of

physical interest).

b. Edge Dislocations

The problems involving edge dislocations in two phase media

are more complicated _han their screw counterparts for two reasons:

(i) The screw dislocation represents a state of anti-plane strain

so that the only one displacement and two shear stresses_ _ and
xz
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T are non-vanishing. Plane strain edge dislocation problems normally
yz'

and T o
involve two displacements and four stresses, _xx' ayy, azz xy

(2) The screw dislocation has no associated dilatation, so that

Poisson's ratio effects are of no importance; this is not the case

when edge dislocation solutions are sought. The strengths of the

various image dislocations used to describe the edge solutions depend

upon complex combinations of the respective shear moduli and Poisson_s

ratios of the two pha6es.

Head (II) first treated the single edge dislocation in a bi-

metallic elastic medium by reducing the original bipotential problem

to a pair of potential problems. His solutions include cases in which

the junction x = 0 (Figure I-i) is a free surface, a perfect weld,

and a slipping boundary. In general the image dislocation system

needed to describe the stress state in the dislocated half of the bi-

metal consists of an image edge monopole, an image edge dipole, and an

image edge quadrupole, all located at the reflected point (-%0)°

The image strengths are complex functions of the bimetallic elastic

_onstants, so that numerical calculations are required to determine

the attractive or repulsive nature of the net image force on the real

dislocation. Dundurs and Sendeckyj (12) also solved the "perfect weld"

bimetal problem in such a manner that the dependence of the net image

force upon the elastic constants is in a form more tractable than that

given by Head.
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Dundurs and Mura_13"(_ and Dundursand Sendeckyj_14"(_ have treated

the edge dislocation inside and exterior to a circular inclusion. Again

the results depend upon complicated combinations of the elastic constants.

The image system describing the matrix stress state for the exterior

problem consists of an image monopole_dipole_ and quadrupole at each

of the image points (R2/t, O) and the origin (Figure 1-3)o

4. Previous Treatments of Arrays of Dislocations in Elastic Media

ao General Remarks

The most natural extension of the solutions for single disloca-

tions in elastic media is the consideration of arrays of such line defects°

This dissertation will concern itself only with dislocation arrays of the

following class:

(I) The arrays will exist in an infinite three dimensional elastic

medium(not necessarily single phase).

(2) 0nly two dimensional problems involving these arrays will be

considered. All dislocation lines in the arrays will be parallel to

the z-axis of an x-y-z Cartesian frame fixed in the medium, and any

second phases (inhomogeneities) present will be considered infinite in

the z-direction. Thus, translational invariance along the z-direction

will insure that the stress and displacement fields of the arrays are

independent of z.

(3) The array dislocations will be restricted to lie upon lines

parallel to the x-axis of the Cartesian frame. Hence, we shall speak

of linear or planar dislocation arrays.
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The stress field associated with an array of dislocations is

merely the sumof the stress fields of the dislocations in the array.

The evaluation of such sumsrequires knowledge of the position of each

dislocation in the array. At static equilibrium the array dislocations

must be positioned so that each dislocation experiences zero net force,

i.e., the force upon any one dislocation due to all other dislocations

in the array must be balanced by the componentof the effective applied

stress tending to movethe dislocation. In general the determination

of the distribution of array dislocations is not an easy tasko

As a meansof introduction to the techniques available for

treating dislocation array problems, the following three sections will

illustrate three different analytical treatments of the sameproblem°-

a pileup of screw or edge dislocations in a single phase material° This

is the simplest array problem which maybe treated analytically in

closed form, and the results maybe favorably comparedwith elasticity

calculations of stress concentrations near crack tips in a single phase

medium°

b. The Discrete Dislocation Formulation

Eshelby, Frank, and Nabarro(!5) in 1951 considered a pileup of

screw or edge dislocations in an infinite, single phase, isotropic

elastic material (Figure 1-8). Physically, the picture is that of a

planar slip band of right-hand screw or positive edge dislocations (on

the slip plane y = 0) moving to the left under the action of an

effective applied shear stress T (= -_ for the case of right=hand
yz

screws, = -T for the case of positive edge dislocations). The leadingxy
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dislocation has become locked at the origin by an unspecified short

range force proportional to 8' (x = 0), the derivative of Dirae_s

delta function, and the remaining N dislocations in the array have

piled up behind the locked dislocation. The condition of static

equilibrium requires that the positions x. of the array dislocations
g

be determined from:

i+l}w - • =0,

i=l X .-x. x.

i/j a 1 a

where

Gb
A-

2_

Gb

j = 1,2, ... , N .

for a screw array

for an edge array

(I°4-1)

G = shear modulus

b = Burgers' vector

v = Poisson's ratio .

In Eq. (1.4-1) the first term on the left represents the stress on a

dislocation at x. due to all other array dislocations (the term
J

.th
i = j has been deleted from the sum because the J dislocation exerts

no force upon itself). The second term in (I.4-i) is the stress on the

dislocation at x. due to the locked dislocation at the origin, and
J

the third term is the effective applied shear tending to move the dis-

locations along the slip plane y = 0.
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The Eshelby, Frank and Nabarro (15) (hereafter referred to as

EFN) solution for the dislocation positions x utilizes a technique

(16) J
discussed by Stieltjes in 1885 in connection with the analogous

problem of electrostatic line charges distributed in a linear array.

Stieltjes' method is the following. If we regard the

zeroes of a polynomial f(x) of degree N, then

x. s as the
J

N

f(x) = _ (x-x i)
i=l

(1.4-2

The logarithmic derivative of f(x) is

N
d(ln f(x)) f'(x) i

dx - x-x.
i=l i

1.4-3

The equilibrium condition (1.4-1) may then be written as

A
lira Sf'(x) i } + Ax_x.[f(x) x-x. x- _ :°;J j

J

j = 1,2, ooo,N o iIo4-_)

Using L'Hospital's rule twice, one may show that

lim _f'(x) _ __i } f"(x.),]
if(x) x x : 2f'(xj)'x_x. O

J

1.4-5

so that the equilibrium condition may be expressed as

+2 _-ij f <xj):o_
j = 1,2_...,N 1o4-6)
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with the auxiliary condition

f(x.)= o;
J

j = 1,2,...,N .

Letting _j : (2Txj)/A, Eq. (1.4-6) may be written as

(1.4-7

f,,(
_j) + (2 , _j) f'(_j) = 0 ; j = 1,2,...,N oJ

(1.4-8

Now suppose we consider the differential equation

_f"(_). (2-_)f'(_). q(_,_)f(_) = o (Io4-9

If we can choose a function q(N,_) such that (1.4-9) has as a solu-

tion a polynomial of the Nth degree, all of whose roots are real and

distinct, and if q(N,_) has no poles at these roots, then the problem

is solved. The EFN choice for q(N,_) was

q(_,_)--ml, Io4-10)

so that f(_) satisfies

_f"({) + (2-{) f'({) + (n-l) f({) = o .

The desired solution is (17)

1.4-1.1)

, ,.2TX,
f({) = LN(_) = LN[-T) , 1o4-12)

!

where L N is the derivative of the Nth Laguerre polynomial° Thus, the

spacing of the array dislocations is essentially the spacing of the

(17)
radial nodes of a hydrogen atom wave function for an Ns state.
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Knowing the distribution of the array dislocations the EFN

calculations showed that

(1)
T L

AN 1.84 3 L : XN-X I, the slip line length.

(2) ¢ _ L/N 2, where e is the separation distance between the

locked dislocation and the nearest array dislocation.

(3) Ahead of the pileup tip (X < O, L/Ix i >> i) the shear stress

on the slip plane y = 0 is

T

where ij = xy for an edge array and ij = yz for a screw array°

Using the asymptotic (large N) properties of the Laguerre polynomials,

Stroh (18) extended the EFN solution by deriving approximate expressions

for the local stress field near the pileup tip as part of a discussion

of the criterion for crack initiation at the tip of a blocked slip

band° Both the local stresses given by the EFN and Stroh calculations

are a factor of _ higher than the local stresses near the tips of

(19)
elastic cracks in single phase media. This is not unexpected,

since the EFN slip band evidences a stress singularity only at its

leading edge (x = 0). The stress concentration factors given by Paris

and Sih (19) apply to symmetric cracks, i.e., cracks with singularities

at both ends.
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Although it is a beautiful analytical technique, the method o_

Stieltjes' is not well-suited for treating more complex dislocation

array problems, in particular those involving dislocation arrays in

two phase media or opposite sign arrays in single phase media° Indeed,

one might view the EFNsolution as a very fortitious one, since a

q(N,_) could be chosen to yield the desired f(_), and the polynomial

f(_) turned out to be a function whoseasymptotic (large N) properties

and roots were known.

Co The Continuously Distributed Dislocation Formulation

A means of circumventing the difficulties inherent in the

discrete dislocation formulation is the method of continuously distri-

buted dislocations. Credit for the introduction of this technique is

generally given to Eshelby and Leibfriedo (20) A rigorous presentation

of the method has also been discussed by Bilby, Bullough, and Smith° (21)

As its nameimplies, the method of continuously distributed dislocations

is the replacement of a discrete dislocation arrangement by a continuous

distribution of dislocations of infinitesimal Burgers _ vectors, such

that the total Burgers' vector of the continuous distribution is the

sameas that of the discrete dislocation configuration. Physically

speaking, we have "smeared out" the discrete dislocations so that we

may describe the dislocation arrangement by a continuously varying

scalar function (in one-dimensional problems involving linear arrays)°

Near the tip of a blocked dislocation array where the dislocation

spacing is of the magnitude of the Burgers' vector (or interatomic

£8



spacing), such a description seems quite appropriate, e.g., if two dis-

o

locations on a common slip plane are separated by only 2-5A, it makes

little sense to speak of two discrete dislocations, since the separation

distance is comparable to the width of the dislocations. The EFN cal-

culation showed that the leading pileup dislocations were separated

by a distance _ _ L/N2o For a typical slip line length, L _ 10 -4 cm,

the two leading dislocations in a pileup of I00 dislocations are

o

separated by only about IAJ

If we now reformulate the EFN problem using the continuous dis_

tribution approximation, we are left with two choices for treating the

dislocation locked at the origin. We can consider this dislocation as

part of the smeared out array, or we may treat it as a discrete line

defect, separate from the remainder of the array. In this section we

shall treat the locked dislocation as being incorporated into the con-

tinuous distribution; the following section will treat the EFN problem

assuming the locked dislocation to be discrete.

When N is large enough to invoke the approximation of con-

tinuously distributed dislocations, the equation of static equilibrium

(1o4-1) is recast as a singular integral equation

L

J f(t) dt • . (1o4_13)x-t = _ ' 0 < x_ L ,

0

which must be solved for the unknown dislocation distribution function,

f(t). x is a source point, t a field point, and the integral in

(1o4-13) is understood to be a Cauchy principal value integral, ioe_,
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L x-$ L

_ f(t)dtx_t _ lim {f f(t)dtx_t +I f(t) dt}x-t

0 _ -_ 0 0 x+_

(lok-14)

Mathematically, we have deleted a small neighborhood about the field

point x in the distribution. This is analogous to deleting the term

i = j in the sum in Eq. (1.4-1). The Cauchy principal value, or

symmetrical deletion, is chosen to avoid ambiguity° One normally

employs a similar symmetrical deletion when speaking of the core of a

dislocation, ioeo, the core is pictured as the region inside a circle

of radius r0 drawn about the dislocation line as a center. (I)

The end conditions for f(t) are that_

(i) f(L) = O, since there are no dislocations at the trailing

end of the pileup°

(2) f(t) is unbounded with a weak singularity (tf(t)-_ 0 as

t _ 0) at t = 0_ since we expect a stress intensification

at the leading edge of the pileup.

The solution for the dislocation distribution function

is (see Appendix B) :

f(t) :

f(t)

(_o4-15)

N, the number of dislocations in the array is given by

TL
-2,AN

(1o4-16)

which compares favorably with the EFN relation

_L
- 1.84 .

AN
(Iok-17)
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The utility of the continuous distribution approach is apparent

whenone calculates the pileup stress field. Excluding the external

applied shear component, _, the stress field of the array is given by

the superposition integral

L

Tij(x,y) = [ _..(x,y,t) f(t) dt . (Z°4-18)
0 la

Close to the pileup tip

is approximately

(L/D >> i) the stress field of a screw array

XZ

yz

sin qD2

COS 2

(Io4-19)

where p and _ are the polar coordinates depicted in Figure (1-8)0

As noted previously, Eqs. (1.4-19) are higher, by a factor of -{_,

than the Mode 111 stress fields reported by Paris and Siho (19)

do The Modified Continuous Distribution Approach

The technique described in this section is a modification

suggested to the author by A. D. Brailsford (22) of the Ford Scientific

Laboratories. The essential difference between the modification and

the treatment outlined in the previous section is that the locked dis-

location at the origin is allowed to remain discrete; the remainder

of the array dislocations are smeared out in a continuous distribution,

f(t), which is bounded (zero) at its end-points t = L and t = e,

where £ is the separation distance between the two leading pileup
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dislocations (Figure 1-8)o Static equilibrium is satisfied provided

that f( t ) satisfies

L

f f(t) dt = ! _ ix-t A x _
E

c <_x < n . (Ioa-So)

Equation (1o4-20) is soluble provided (see Appendix B) that

_/_ A io4-21)

the appropriate modified distribution function is

T _(L-t)(t-c)
f(t) - _A t io4-22)

One notes that in the limit as _ tends to zero (when the locked dis_

location is incorporated into the continuous distribution), the modified

f(t) given by (Io4_22) reduces to the unmodified form (Eq° (_o4-15))o

N, the number of pileup dislocations is given by

L
T

N = I f(t) dt = K (L + c) - i o (1o4-23)
0

Combining Eqs. (1.4-23) and (1.4-21) yields

T,+ : (N+l) , (io 4-24

so that when N > I0

L L
m

c _+2N- i N2 '
(1.4-,25
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which is the EFN result deduced from knowledge of the asymptotic

(large N) properties of the l_guerre polynomials°

Of the three methods presented for treating the problem of the

pileup in a single phase material, the method of section (c) presents

the least computational difficulty. The technique of section (c) seems

more suitable for computations than the modified method outlined in

this section, partly because the integral equation for f(t) is some-

what simpler, and partly because one need not worry about the auxiliary

solubility condition associated with a distribution function bounded at

both its end-pointso Therefore, the calculations in this dissertation

will utilize the continuous distribution approach treating the leading

array dislocation as part of the "smeared out" distribution° It will

be seen that the continuous distribution technique provides a profit-

able analytical technique for treating in closed form problems involving

screw dislocation arrays in simple two phase systems° Knowing the

solution for a single dislocation in a two phase medium, this method

permits the immediate formulation of a rather complicated boundary

value problem in terms of an integral equation which has already in-

corporated within it the appropriate boundary values and the static

equilibrium condition. This incorporation is important in two phase

problems where the boundary (interface) conditions are of the dielectric

variety, i.e., continuity of the displacement field and linear combi-

nations of its derivatives across the phase boundaries°
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e. The Method of Johnson and Webster

There exists yet an alternative method introduced by Johnson

and Webster (23'24) for treating screw dislocation array problems° The

method is equivalent to that of the continuous dislocation distribution,

and it avoids the need for computing the array stress field by evaluating

the superposition integral° However, the use of the method appears to

be restr_6ted (on a practical basis) to treatments of screw dislocation

arrays in single phase media°

This technique recognizes the screw dislocation-_vortex line

analogy_ and_ since the displa@ement field of a screw is harmonic, uses

conformal mapping as part of the method of solution° Basically_ the

technique involves solving for a complex stress potential in much the

same manner as described by Muskhelishvili (48) in the case of plane

stress or plane strain elastostatic problems° Conformal transformation

of the plane curves over which dislocations are distributed to segments

of either the unit circle or the real axis allows the transformed

complex stress fumction to be obtained by standard techniques° Normally

this requires solution of a Riemann-Hilbert problem for the sectionally

holomorphic complex stress function° This step in the procedure is

fully equivalent to finding the dislocation distribution function from

the integral equation of static equilibrium° Inversion of the mapping

and differentiation of the stress function yield the array stress field,

and the discontinuity in tangential shear stress across the plane

curves threaded by the dislocations is related to the dislocation

distribution function.
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The limitation of the applicability of the complex stress

potential analysis to dislocation arrays in single phase systems _s

due to the dielectric type of boundary conditions associated with the

multiphase problems° Conformal mapping usually does not prove to be a

useful tool in such cases; the more straightforward continuous distri-

bution approach is preferable because of the built-in boundary values°

In single phase problems the great merit of the Johnson-Webster approach

is apparent in the treatment of configurations of non-colinear planar

screw arrays--eog., the case of the interaction of two parallel slip

bands (Figure 1-9)o A Schwartz-Christoffel transformation can be used

to map the lines of the arrays onto segments of the real axis, and the

transformed stress potential can be calculated° Usually, however, in-

version of the mapping and subsequent expression of the stresses is a

numerical calculation° The standard continuous distribution approach

to this type of problem requires numerical calculations to solve the

integral equation (or equations) of static equilibrium and to evaluate

the superposition integral for the stresses°

f° Dislocation Arrays at a Rigid Half-Plane

There exist in the literature numerous other treatments of

continuous distributions of dislocations in single phase materials, the

most notable being those by Leibfried, (20) Head, (26) Louat, (27) Head

and Loua% (28) Smith, (29'30) Bilby, Cottrell and Swinden, (151) and

Weertmano (32) Because any single phase elastostatic dislocation array

problem will involve solving a singular integral equation with only a
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Figure 1-9: Two screw dislocation pileups on parallel slip planes

in a single phase, isotropic elastic medium (Johnson

and Webster).
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simple Cauchy kernel,_25jl_ the mathematical treatments of such problems

are adequately described by Appendix Bo However, as we shall see, the

presence of second phases near dislocation arrays generates additional

terms in the kernel of the integral equation of static equilibrium°

These extra terms in the kernel arise from the previously discussed

image forces produced by the inhomogeneity and lead to a class of

integral equations which, to the author's knowledg% have not been

investigated°

Chou (33) in 1965 considered the application of the method of

continuously distributed dislocations to the problem of a screw pileup

against a rigid semis.infinite second phase° Consider N right-band

screw dislocations_ each with Burgers' vector b_ in a slip band of

length L which is blocked by a semi-infinite second phase (x _ O)

whose shear modulus, G2, is much greater than the matrix (x _ 0) shear

modulus G I (Figure I-i0)o The applied stress is '_yz = _'_° If the

weld x = 0 is perfec% then using Head_s solution for the single screw

dislocation in a bimetal_ noting that K _ i when G2 _ GI, and in-

voking the distributed dislocation approximation_ static equilibrium

requires that

L L

f f(t)dt J f(t)dt'x-t + -- x+t

0 0

2_T
0 _ x _ L (Io4-26)

where f(t) is the dislocation distribution function°
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The first term in (1o4-26) contains the usual Cauchy kernel

common to single phase problemsj the second term containing the "image

kernel" I/x+t may be interpreted as the stress at a field point x

in the real pileup due to an image screw array of total Burgers' vector

Nb, distributed on the interval [-L,0)o Combining terms on the left

side of (1o4-26) yields

L

._ f(t) dt _T
x2_t 2 - GlbX '

0

o < x < L , (_oL-27)

2 = t2whereupon the substitutions _ = x , _ reduce Eq° (_o4-27) to a

singular integral equation with a simple Cauchy kernel° Inverting

according to the techniques outlined in Appendix B, the dislocation

distribution function is found to be

4,. -l_.T.)
f(t)- _G b cosh ._ ,

I

i,,4-28)

and N, the number of piled-up dislocations is given by

2_ L

a_ N
I ,,4-29

Barnett and Tetelman (34) have evaluated the superposition integral and

found the stresses in the second phase (x < O) to be given by

_T

Txz : - -_ sgn(y) _0_0

2

2__T[w2 +_ 2_yz = - 2 -_-- a } ,

(Zo4-3o
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where

sinh2 _0

2
sin

sgn(y): l, y > 0

= -i, y < 0

= O, y = 0

: [ (_) - 1 + <(Z) - 1>2 -- sin 9

_0 = [ 1 - (7) + ((_) - i) 2 -- sin 9

(_oa-31)

p and _ are polar coordinates in the second phase (Figure I-I0)o

Close to the pileup tip in the second phase (L/p >> i)_ the local

stresses are

_ (_)_ - --q_ in ,
xz 2

l_"2L,>2 2 }2r{< <%_) +_ 2_-_ -g'-_ o
_'yz

(Zo_--32)

Chou (33) has noted that the same analysis holds for a pileup

of edge dislocations at a rigid half-plane when the weld x = 0 cannot

support shear stresses° The local stresses of the edge pileup are then

t i (34)approxima e y

8_ iTxx _ - "_ [9 + _ sin 2 9 ] in( )

_ - "-_ [9 - [ sin 29] in( )
YY

8_ 2 ,2L
T _ - -_ cos 9 ln(7)
xy

(Zo4-33)

4o



The maximumnormal tensile stress occurs across a plane inclined to the

slip plane at an angle _ = -66o15°o For an edge pileup in a single

phase material Stroh (18) found that the maximumnormal tensile stress

occurs across a plane inclined at _ = -70° .

Twonoteworthy results of the rigid half-plane problem are:

(I) The stress singularity at the pileup tip is a logarithmic

one as opposed to the inverse square root singularity pre-

dicted by single phase elasticity calculations (Eqo (1o4-19))o

(2) The numberof dislocations, N, in the pileup is less than

that predicted_by single phase calculations (Eq. (1o4-16)o

In fact Chousurmised that the relation

2_T L
GIb - 2 + , 0 ! K S l ,

should hold for a screw array blocked at a half-plane of finite

rigidity.

Both observations indicate a lowering of the local stresses

generated by the pileup due to the presence of the rigid second phase,

since the logarithmic singularity is less severe than the inverse square

root singularity, and a lesser number of dislocations in the array will

lower the local stress intensification.

In a real material, of course, the second phases present are

of finite size and finite rigidity° In order to examine the effects

of inclusion size and rigidity upon the local stress field of a blocked

slip band, the following three chapters will treat the problems of:
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(i) a screw dislocation array blocked by a rigid circular in-

clusion (Chapter II).

(2) a screw dislocation array blocked by a semi-infinite second

phase of finite rigidity (Chapter IIl).

(3) a screw dislocation array blocked by a circular inclusion of

finite rigidity (Chapter I_)o

Obviously (3) is the completely general problem which includes (i) and

(2) as special cases, but the general problem is most readily treated

using the experience gained from first solving the special cases°

Chapter V will treat the problem of an infinite sequence of screw dis-

location arrays (on parallel slip planes) stacked against a half-plane

of finite rigidity; this might be taken as a simple model appropriate

for a work-hardened material, since the slip dislocations are no longer

confined to a single slip band° In Chapter VI the problem of an edge

dislocation array blocked by a semi-infinite second phase will be

formulated° All of the above problems will be treated by the continuous

distribution approximation subject to the restriction that no relaxation

of the array stresses will be allowed during pileup formation.

Applications of the results obtained in Chapters II-V will be

discussed in Chapter VIIo The effect of the presence of second phases

upon a derivation of a Hall-Petch type relation for the grain size

dependenceof the yield stress of a polycrystal will be examined°

Finally, the following possible modesfor relaxation of the pileup

stresses will be considered_
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(I) Yielding near the second phase.

(2) Fracture of the second phase or of the second phase-matrix

interface°

(3) Cross slip of the leading array dislocations around the

second phase°

Approximate static criteria for relaxation by either (i), (2) or (3)

will then be formulated.
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CHAPTER II

A SCREW DISLOCATION PILEUP AT A RIGID CIRCULAR INCLUSION

i° Analysis

Let us now relax Chou's c_ndition of a semi-infinite second

phase (33) in order to examine the effect of a finite size rigid in-

clusion upon the distribution of dislocations in and the local stresses

associated with a blocked slip band. Consider the two-_hase medium

depicted in Figure I-2 (a circular inclusion imbedded in an infinite

matrix). Let a planar array of N right hand screw dislocations, each

of Burgers' vector b, distributed over a length L on the slip plane

y = O, be piled against the inclusion due to a shear stress _ (y = O)
yz

= -_(x)_ the leading dislocation is blocked by the inclusion at the

point (R, 0) (Figure II-i). When the inclusion is rigid, so that

K = (G2-GI)/(G2+GI) _i, the use of eq. (1.3-5) to formulate the static

equilibrium condition yields

alb N 1 +D 1 N
-- x.-x----n :2_ j_ 1 j j=l x. -

j_i i j

i = 1,2,..., N .

(iI°l-l)

These N equations determine the position of each discrete dislocation

in the array. The first sum on the left side of (II.l-l) is the stress

on a pileup dislocation at x. due to the other N-I pileup disloca-
l

tions at positions xj; the second sum may be interpreted as the
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retarding stress on the dislocation at xi due to a pileup of N dis-

locations of strength b at positions R2/xj, the image positions of

the N real dislocations at xj3 the third term represents the

attractive stress acting on the dislocation at x i due to a giant left-

hand image screw of strength Nb at the origin (Figure 11-2). Defining

the dimensionless parameters tj = xj/R and replacing the discrete

dislocations in the array by a continuously distributed dislocation

array, the equilibrium condition is recast as the singular integral

equati on

f °f(t) dt pf(t) dt N + 2_R _()_);
_-t + J x-i/t - z G_

i i

1 < ]k< _ , (Iioi-2)

where

L + i (II°i-3)
•

(= x/R) is a field point in the array, t a source point, and f(t)

is the unknown dislocation distribution function.

At this point in the analysis it is appropriate to comment on

the exact form of T(_), the component of applied stress acting on the

slip plane in the matrix. Consider an infinite elastic medium of shear

modulus GI in which is imbedded a circular inclusion of radius R

and shear modulus G2. If a shear Tyz = -T is applied at infinity,

and if one demands continuity of the displacement field and the

tangential shear T across the inclusion interface, then the solution
rz

for the elastic stress field in the matrix is easily shown to be:
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where

K_R 2

Txz 2 2 sin 28
x + y

_yz T + 2 2 cos 2e
x +y

@ = tan -I _
X

G2 - G I

G2 + G I

(II.l-4)

Along the slip plane y = 0, _ vanishes, and
xz

_yz = -_ i - -_- .
x

(II.i-5)

Hence, in the purely elastic case, the stress T(k) in (II.l-2) should

be given by (when g = i)

(II.l-6)

where _ = x/R. If, however, we say that the presence of a slip band

on the interval i < k _ _ = L/R + i is indicative of plastic yielding

in this region, one may, based upon a yield criterion, wish to say that

T(h) = _, the yield stress in pure longitudinal shear. In this chapter

we shall identify T(k) with the yield stress in anti-plane strain.

The integral equation (11.1-2) may be easily solved for either choice

of T(_); however, it will turn out that by letting _(_) = T, we will

gain additional information which will prove useful in constructing
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the general solution of Chapter IV (regardless of the choice of

Hence, we seek a solution to

_ f(t) dt r f(t) dt N
2____R

k-t +J k-i/t - k + Glb % '
i i

1 < }k < 8 , (II.l-7)

such that f(l_i is unbounded with a weak singularity and f(8) : 0

(there are no dislocations at the trailing end of the pileup). Equation

(11.1-7) is not in standard form because only one of the kernels is a

standard Cauchy difference kernel. However, one may physically extend

the equation to the full interval [1/8, 8] so that only a simple

Cauchy kernel appears. This is done in the following manner. Since

(11.1-7) can also be regarded as the equilibrium condition describing

two planar asymmetric dislocation arrays, each containing N disloca-

tions, piled up against one another in a single phase medium due to a

shear Tyz(l < _ _ 8) = - [(GIb/2_R)(N/_) + T] , then

8 i
N = _ f(t) dt = f g(t) dt , (11.1-8)

1/8

where g(t) is the distribution function for dislocations in the image

pileup in [1/8 , i). Making the substitution t' = i/t, one finds that

i f(1) = g(t)7 i___g(_) : f(t)
t2

(II.l-9)

Thus, one can define a distribution function f(t) for the full in-

terval [1/8, 8] with the property
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___i2 f(1) = f(t) (II.i-i0)
t

Equation (11.1-7) can then be rewritten as

],/_ 2_R_

f(t) dt N + _ i < _ < _ (Iioi-ii)
_-t = }_ Glb '

Letting _ = i/_' in (11.1-7) the integral equation for the full interval

[I/_, _] is obtained.

GIb ; 1 <k <

- ; -<_< i

Glb_ 2 _ --

C11.1-12)

Since f(_) = O, Eq. (II.i-i0) implies f(i/_) = O, and (Iioi-12) is

soluble provided (see Appendix B)

GINb i + _-i {_ -i _-I} (II 1-13)
2TL - _ 2_ _ + sin _+i " °

Figure 11- 3 shows N (in units of TL/GIb) as a function of _. One

notes that

GINb

2_L
--_ 1 as R _

GINb
-_- as

2TL 2
R_0

(semi-infinite second phase)

(single phase homogeneous

medium) .

(Iioi-14)
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Inversion of the integral equation according to techniques out-

lined in Appendix B yields

f(t)
2RT

-- (2 + sin -I _i)(_ +-- _(_-t)(t-i/_)

.,, < (II°i-15)

One notes that f(t) satisfies (Iioi-i0) as required° Equation

(11o1-15) represents the distribution function in dimensionless form.

The true distribution on the real interval [R, L+R] is

E < '>'}2T _ -i _ I + ( i+(_-l)_f(_) - _Glb (i + sin _+i ) (_-i) i+(_=i)_

2_ i/2+(_-i)_
I ) cosh=

× _/(l-_)(<+ _/_)+ l + (l+(_-l)_ ' (_+_)_'J'

(IIol-16)

where _ : Oo/L , and Po is the distance from the pileup tip (R,O)

to any point in the distribution, f(_) is shown in Figure 11-4 for

several values of _. Using (1101-i6) one finds agreement with the

limiting cases previously studied:

f(_)__4_ -il
_al---_ cosh (i)

2_!_f({)-_alb

as R _ _ (semi-infinite second phase)

as R _ 0

(11,1-17)

(single phase homogeneous

medium)
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2o The Pileup Stress Field

Evaluation of the superposition integral to yield the stresses

associated with the array (excluding the component of the applied

stress) is accomplished by contour integrations in the complex plane

as outlined in Appendix Co The calculations are somewhat tedious and

2 2 R2 i.eo along theare most simply performed when (i) x + y = , ,

interface, and (2) y = 0, along the slip plane.

]interface Stresses

The stress
rz

is given by

tending to shear the matrix-inclusion interface

"[

rz i - -1,ira e2-! (sinn _+i ic°t _I )'}cos @ - sin 8

-1 _-l
+ (_ + sin }

_+1 cos
iI.2-1)

Using the relations

L- #-i '

iio2-S)

where 8 and _ are polar angles relative to the origin and pileup

tip, respectively, and p is the vector measured from the pileup tip

(Figure II-i), T can be expressed as a function of only p/L. The
rz

result is shown in Figures ll-5a and ll-5b for two values of 6o
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Although the shear T is continuous across the interface,
rz

the stress _@z is not. Approaching the interface from inside the

inclusion

= 2T { [, i -i,_-i 8 >2 _-i] 2 ] @_Oz -_ <S nh (_+1 ic°t _1) + (sin-1 _+1" cos

-i bzl _ -z bzi >[_-z + (_-l) 2 -1 _-z
+bzA_c_cos _+l- <_ + sin _+l L7@ 2_ cos _+l

_) e-2 e __s e+l+ 2(sin -1 cos cos

X sinh [_+i
( Z I. 2-,3 )

Taking the limit as R _, 9 _/2, one finds the interface

stresses at the semi-infinite second phase.

Trz(interface) _ Txz(interface) _ 2T sinh-1 y

TSz(interface) _ Tyz(interface) : _ 2___T2<sinh-i _y )2

(II.2-k)

The interface shear T
xz

depicted in Figure 11-6o

at a rigid semi-infinite second phase is

Shear Stresses on the Slip Plane y = 0

Inside the inclusion the stress

tending to shear the inclusion is

T on the slip plane y = 0
yz
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_yz(y= o) -

where

2

4_ (i , i <cosh-l( l---K,">
2

__y-i
+ _ sin _+i _ <_ + sin

_ -lick . i _2)× " (l * si_ B.I) (y *- n/(B-_)(_-l/B)

-i,_-i i*_, I (B-I)2 i i ]}× cos__H _--:T)* (_ - 2B •_)cos-B*l '

1 > ]_ > 1 (II.2-5)
-B

x _ i-_
k = _ and L - B-I

For -i ! k ! l/B, Ty z is given by the same expression with

-I__11 l+h_ 2
cosh [_+y 1-_._, } and cosh-l,_-i i+_,)B+I 1-k

replaced by

2

-l,i:! i._)
- _cos kB+l l-h"

and -l,_-i i+?_
-cos _B+I l-)k" '

respectively.

Outside the inclusion the slip plane shear stress is:

_ (i- ) *(i. ) _i_ _+_)

-i!el i i_) }
+ (_ + si_ B.I)(I+ _ -{(B-k)(IlB'_,) ;

k< -i . (Iio2-6)
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The slip plane shear stress inside and outside the inclusion is shown

as a function of p/L in Figures ll-7a and ll-7b for two values of _.

Taking the limit as R _ _, the slip plane shear stress inside

a rigid semi-infinite second phase is seen to be

T
yz L2}: _ -_ + <cos_-iT_i> Ix] <L

2 <cos-I717> ; Ixl> L

(Iio2-7)

in agreement with Chou's earlier calculationo (33) Letting R _ 0 in

(111.2-6) one recovers the expression for the slip plane shear stress

ahead of a pileup in a homogeneous single phase material°

Ty z : T 1 - + _7 ; x < 0 (I1.2-8)

Equations (11.2-7) and (11.2-8) are compared graphically in Figure II-8.

Inside the inclusion at distances close to the il_ ti___p

(L/D >> i, h _ i) the important singular terms contributing to the

shear stress on the slip plane are

: _ 2T cosh-l(L (i L-p })
Tyz _-_ _ - L+2R

× [cosh-l(L (i - L-p })+2(2 + sin-i _ii) p-I ]
L+2R f_

(II.2-9)

The first term in (11.2-9) is dominant if
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[ ] [ .210 - _ 2 -lul _ -i
L 1 - > cosh (_ + sin (II

_+2R _/_ _+l) _

If the inequality is reversed, then the second term in (11o2-9) dominates.

Now consider two distinct cases:

Case I. L/R > 5

Physically this case might correspond to that of a dispersion

hardened material. When L/R > 5,

0 L+2R _ _ i - (1 - _)(1 - )

2R
--1 +-- ° cII.2-11_

0 % J

Thus (11o2-9) and (11o2-10) combine to yield

when

- 4--IT cosh-l(l + _-) (II.2-12)Tyz

_P_>_ i0-0.8_ _-_2L °

In this range of

If

then

P, T decreases as R increases (0 fixed)°
yz

_p_ < 2R 10-0o8_/R
2L -L-

2

2T <cosh-l(l+ 2__R)>
T,yz _ - -_ p

(Xio2-1})
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and T increases as R increases (fixed p). For L/R > 5, (11.2-13)
yz

can only apply when p/2L < 2/5 X 10 -5 Since L, the slip line length,

typically varies between 10 -4 and 10 -6 cm, (11o2-13) can only apply when

p is less than one Burgers _ vector° Thus, at distances of physical

significance, equation (1102-12) will describe the stress state near the

pileup tip in the inclusion.

Case Iio L/R < 0°8°

This case might correspond to a cermet containing a hard phase

volume fraction of about 60% (L _ 10 -4 cm, R _ 2 × 10 -4 Cm)o Proceeding

as in Case i, when

> i0-0° 4_L/R
L

T = _ 2_ L cosh-l(L) (Iio2-14)
yz _2 R p

In this range of p, T (at fixed p) decreases as
yz

When

P < 10-0"4_L/R
L

2

_ 2_._T(cosh-1 _)
_yz _ 2 p '

R increases.

(Iio2-15)

so that the inclusion radius has no effect upon the slip plane shear

stress° Again taking typical values for L, the slip line length,

Eqo (II.2-15) can apply when p is between i0 and 500 Burgers'

vectors, a region of considerable physical significance°
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Since the case of a perfectly rigid inclusion is never physically

realized_ little useful information is to be gained from further dis-

cussion of the local stresses° The feature of primary interest in this

problem is the form of the dislocation distribution function (Eq.

(IIoi-15)). As mentioned previously, knowledge of the distribution

function associated with this problem_ when coupled with the solution

to be generated in the following chapter_ will allow us to construct

the exact solution for a screw dislocation pileup at a circular inclusion

of finite rigidity°
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CHAPTER III

A SCREW DISLOCATION PILEUP AT AN ELASTIC HALF-PLANE OF FINITE RIGIDITY

io Analysis

Having treated the problem of a screw array blocked at a rigid

inclusion of finite size, we shall proceed to the "opposite end of the

spectrum" and examine a screw array stopped by a second phase which is

semi-infinite in size but of finite rigidity° This is the completely

general case of the problem discussed by Chouo (33)

Consider a bimetal composed of two elastic half-planes joined

by a perfect weld along x = Oo The shear modulus is G I if x > O,

G2 is x < Oo Let a linear array of length L of N right hand

screw dislocations, each of Burgers _ vector b, be piled up against

the weld under the action of an applied shear T = -_(x) = -T, a
yz

constant (Figure III-i)o Using Eqso (1o3-5) , the static equilibrium

condition determining the positions

becomes

x. of the discrete dislocations
1

alb N I +K X i
2_ j_ xi-x. x.+x. = T,j j=l i j

where

i = 1,2,..., N

G2 - GI
o

G2 + G I

(III.i-i)
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The second sum in (III.i-i) can be interpreted as the stress on a pile-

up dislocation at (xi,0) due to an image array of N screws, each

of strength Kb, at positions (-xj, 0), the image positions of the N

real pileup dislocations° The force on the dislocation at (xi, 0)

exerted by the image array is attractive if g < 0 (the pileup exists

in the harder phase), repulsive if K > 0 (the pileup exists in the

softer phase). Invoking the continuous distribution approximation,

(I!Ioi-I) is transformed into the singular integral equation

L L

S f(t)dt _ f(t)dt 2_, x-t - + K x+t - Glb
0 0

0 < x < L (IIIol-2)

with the end conditions f(L) = 0_ f(0) unbounded with a weak singu-

larityo f(t) is the unknown dislocation distribution functiono

No ambiguity in the form of T(x), the applied shear, arises

in this problem° The elastic solution for the bimetallic medium sub-

jected to an applied shear T = -T at infinity (in x > 0) is
yz

where w

T

W =-_lY

T =0
xz

T

yz
= > o)

G2
_ T (x< o) ,

G I

is the displacement field in the z-directiono

(IIIol- 3 )
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Equation (111.1-2) cannot be reduced to a single integral

equation with only a Cauchy kernel. However, an exact solution to

(111ol-2) Can be obtained by considering the appropriate Neumann expan-

sion for f(t). Details of the calculation are given in Appendix Do

One finds

f(t) 2_ 2
_ G1 b sinh sin -cosh-l( , (IIIol-i)

which may also be written as

f(tI - alb

where

s g{ 4_(t/L)2) g(_) (i + - (i - 4-(t/L)2) g } ,

III°l-5)

2 -i I-K

g = r_ sin 111.1-6)

Equation (111ol-4) is the most convenient form to use when computing

integrals involving

and K _ O,

4_ -I L

f(t) -_ cosh •(_)
_I _

2"r _L-tf(t) _ q--

f(t)o Considering the two limiting cases K _ I

as K _i (rigid, semi-infinite second phase)

(III.i-7)

as K _ 0 (single phase, homogeneous medium)

in agreement with previous results. Figure 111-2 depicts f(t) for

different values of g.
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Figure III-2: f({), the dislocation distribution function, versus

= x/L for different relative rigidity ratios _,].
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The number, N_ of dislocations in the pileup is given by

2_ L _ _I-K-

Glb N - 2 _--_
-1 -K

sin

IIioi-8

Chou(33) had predicted that in the range 0 < K < i

(2_x% L

G---_lb, _ = 2 + (_t-2)K o
III ol-9

Both Eqso (IIIol-8) and (III_l-9) are plotted in Figure 111-3, and,

indeed, the linear relation of Chou does not differ any more than about

i_ from the exact relation when 0 <_ K <_ io For K < O, however, the

linear relation is not valid.

One notes that when G2 = 0 (i.e., when x = 0 represents a

free surface)_ K = -i_ the distribution function becomes

L -t2
f(t) - GI b t

, (IIlo i-i0)

and N becomes infinite. The distribution function given by (IIioi-I0)

is characterized by a strong singularity at t = 0 and thus is not an

admissible solution to (IIioi-2)o

2o The Pileup Stress Field

The stress field of the pileup (excluding the applied stress)

is calculated from the superposition integrals
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1.0

/
/
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0

-I.0 0 1.0

K

Figure III- 3 :
2_T L

• -- as a function of _. The linear relation
Glb N

predicted by Chou when 0 < K < i is shown as a

dashed line.
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L

• ij(x,Y) = S Tij(x,y,t) f(t) dt ° (111o2-1)
0

Making the substitution v = cosh-l(L/t)"- " and performing the necessary

contour integrations in the complex v = w + i_ plan% it is possible

to obtain closed form expressions for the stresses (Appendix E). In

the second phase (x < 0)_

where

xz l-g

• : -_J2-UDV7
_yz i-K

I-K

sgn(y) sinh g_0 sin g_0

[cosh g_0 cos g_0 - cos _]

G2

cosh g_0 cos g_0 + Gq _ _

(IIio2-2

i -i+ <( )-i>sinh2 9o : [ (p

2 I{ L 2 _ {)2i>2sin _0 = i i - (l) + ((

+ (-!Lpsin M)2 }

(111o2- 3

2}+ (7 sin qo) o

o and _ are polar coordinates relative to the pileup tip in the

second phase (Figure 111-4)o

cancels the stress in x < 0

One notes that the term -__(G2/GI)_ in T
yz

due to the applied shear (Eqso (111ol-3))o

For K / i and L/p >> i (close to the pileup tip), the net stresses

in x < 0 are approximately

T
XZ

yz

_-_-- i_---_(-_ sin gq0

i
__ 1 ,2T,)g---T - I-K _7 cos g_ o

(ZZZo2-4)
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Figure III--L: The co-ordinate system used to express the stress

field generated by a screw array at an elastic half-

plane of finite rigidity.
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When K = i the stresses in the second phase diverge logarithmically

as p _0. As an example the shear stress T on the slip plane
yz

y = 0 in the second phase is shown in Figure III_5 for several values

of Ko

In the matrix (x > O) the pileup stress field is

xz sgn(y) sinh g_0 cos g_0

Ty z = -T cosh g_o sin g_o + T

(I_Io2-5)

Again the term + _ in T just cancels the applied shear in x > 0o
yz

Close to the pileup tip in x > 0 the net stress field is approximately

T
xz

yz

(IIio2-.6)

i 2_L g

-T (_-) Isin g(_-q0) Io

Thus, when 0 _ K < i (ioeo_ the dislocation pileup is in the

softer phase) then 0 < g _ 1/2 (eqo 111ol-6)o When -i < K < 0, the

dislocation pileup is in the harder phase_ and 1/2 _ g < io The

stresses near the pileup tip will evidence the familiar inverse square

root singularity (19) (_.. ~ T _-/_) only if the medium is perfectly
13

homogeneous (K = 0)o g as a function of K is shown in Figure 111-6o

The presence of a second phase ahead of the dislocation slip band

changes the form of the local stresses (Figure IIi_5), primarily because
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Figure III-6: g, the strength of the pileup tip stress singularity,
as a function of K.
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image dislocation forces introduced by the inhomogeneity affect the

dislocation configuration near the weld (Figure 111-2)o Equations

(111o2-4) and (111o2-6) are consistent with results reported by Zak

and Williams (35) for stress intensification in a bimetallic medium

as treated by ordinary continuum elasticity methods°

Because of the form of Eqso (111o2-4) and (111o2-6) any

attempt to discuss crack initiation in a second phase ahead of a

blocked slip band via a Griffith-lrwin (36) or Stroh approach encounters

immediate difficulty° Both approaches are based upon the inverse

square root stress singularity at the pileup tip° The effect of

inhomogeneities segregated near grain boundaries might also alter the

derivation of a Petch-type equation describing the grain size dependence

of the yield stress for such a material_ ioeo,

= a. + _ d-I/2 , (iIIIo2-7)
y m y

where

ay : yield stress

d = mean grain size

ai, k are constantsY

Tae classical Petch relation is derived by considering local stresses

ahead of a blocked slip band in a single phase medium. A similar

derivation based upon the above analysis would replace the Petch

relation by

m

:_. +k _ d g , o < g < 1 o (11_io2-8)
y m y
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CHAPTER IV

A SCREW DISLOCATION PILEUP AT A CIRCULAR INCLUSION

OF FINITE RIGIDITY

Io Formulation of the Problem

We are now in a position to remove the restriction of infinite

inclusion rigidity imposed in Chapter II, thus allowing a study of the

simultaneous effects of inclusion size and rigidity upon the local

stresses ahead of a blocked slip band° The size effect will appear

through variations of the parameter

= _L + i , (IV,l-l)
B

where L is the slip line length and R is the inclusion radius° The

rigidity effect will appear through variations of the parameter

G2 GI

K - G2 + GI , (IV.I-2)

where G2 and GI are the inclusion and matrix shear moduli, respec-

tively°

When the relative rigidity G2/G I can assume all values such

that -i <_ < <_ i, the static equilibrium condition describing a linear

array of length L of N right-hand screw dislocations piled up

against the inclusion under the application of a shear T = -T(x)
yz

(Figure IV_,la) is
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Figure IV-I : (a) Schematic illustration of a screw dislocation pileup

against a circular inclusion. (b) Schematic illustration

showing the equivalent image dislocation system used to

describe the pileup stress field.
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2_ j i x.-x."= i j

jji

= )+ K _ 1 K_ : _(xi), i = 1,2, o,N
_2/ j - x-T ....j=l xi - ]_

(_°1-3)

Equation (IV°l-3) may be interpreted in terms of image dislocations

as follows(Figure !V-ib)o Considering an infinite single phase medium

of shear modulus GI, the first sum on the left side of (IV°I-3) repre-

sents the stress at x. due to the other N-I dislocations in the
i

real pileup] the second sum represents the stress at x. due to a pile-
1

up of N image dislocations, each of strength Kb, at positions

(R2/xj, O) inside the inclusion_ the third term, the stress at x.i

due to a giant image dislocation of Burgers' vector -KNb at the

origin_ Defining the set of dimensionless parameters A i = x./R,m and

using the continuous d_stribution approximation, Eqo (IVol-3) is re-

cast as

B B

+ K _ KN 2_R

i i _--_

( TV°l-4)

The end conditions on f(_), the dislocation distribution function, are

f(_) = o

f(1) unbounded with a weak singularity

(my.l-5)

It will be shown that when K =-i (Joe°, the case in which the second

phase is a circular hole)_ the distribution function will vanish at

both ends of the array. Discussion of this special case will be

deferred until later°
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As mentioned in Chapter II, we may consider T(K) as being

of either of two forms

or

• (_) = T, the y_eld stress--a constant,

(pseudo elastic-plastic model)

x(7_) g_l K i_ (purely elastic model)

IV.l-6a)

YV_I-6b)

It will be seen that the choice of _(%) affects the distribution

function, f(_), only through multiplicative constants but does not

alter the functional form of f(_)° For the present let us choose

_(A) = _o We shall indicate later the form of f(_) appropriate to

the choice (IVol-6b)o

2° Solution of the Integral Equation for f(_)o

Knowing the fom of the distribution function obtained by

Chou (33) and the results of the preceding two chapters, it is possible

to guess the exact solution to (IVol-4)o As a first trial let us guess

a solution f0(_) of the form_

fo( ) = A(1 + -i

+ B(I - .-_) sinh cosh -I (_+ii)(__i) o (iVo2_I)

Th_s particular form is chosen for the following reasons° The distri_

bution function found by Chou (33) and the distribution functions of the

two preceding chapters were of the form_

82



-IL
f({)= ao cosh (])

(Chou: K = i, _-- i) (rVo2-2a)

f([) : b 0 sinh g cosh
(Chapter IIl: _ : i, -i < g <_ i)

(IVo2-2b)

f(_): Co(1+_) cosh -i
L'#+l,'_-l'j

do(1 ---1 ) {cosh-i [ (_+_i) -_t_']+ sinh ({_i)]}
{2

(Chapter II: K = i, l < _ < _) (IV ,,2-2c)

[Note: The second term in (IV.2-2c) arises from the first term in

Eqo (IIol-15), since

(i
) sinh osh-z ._+k)C__1) = _+l _ _2 _T_- li_)

( :_o 2-5 )

Thus, the forms of (IVo2-2a) and (IVo2-2b) lead one to generate the

trial function in (IVo2-1) from (IVo2-2C)o The constants A, B, g,

and w in (.IVo2-1) are as yet. undetermined°

83



,_ fo (_) a_

1

{

(_i I) f sinh _'u sinh u du
= 2A [(_+i/_-l) cosh u 2 1] 1 +

2

[(_+z/mz)2 oo_h2 u - z]

x

(_+i/_-i)(_-l)coshu _ (l+_)]

4B(_ +I,2 < sinh wu sinh u cosh u du
* "_--_-_) _ [(_+i/_-i) cosh u _* 1]2 [(_+i/_-i) cosh u ; l]

× l ](_+I/_-i)(_-i)ooshu _ (z+_)

÷

oo

/

ll(U,)_) du

J (IV'_2-k)
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Considering

C

where C is the indented rectangle in the complex u = v + i_ plane

(Figure IV-2), letting v 0 _ _, c _ O, and applying the Cauchy residue

theorem, one finds that if we let (see Appendix F)

2 sin-ig _ '

2 -1 __w =- sin - l-g ,
ir

-I_A
70 = cos _+i ' o__7o__ _ ,

2R"_"
A -

G.,b
J_

sin w(_-70 )

sin 70

2RT
B -

Glb

sin g(_-/O )

sin 70

(IV.2-6)

then f0(_) satisfies the integral equation

fo (_) at _ro(_) d_ KNo 2_m

]_- _ Glb
1 1

where

NO=/ fo({) d{
1

(iVo2-8

and
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Figure EV-2: The contour C in the complex u = v + i_ plane used

to solve the integral equation fo_ the dislocation
distribution function.
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(_0 = KN0 sin2_y0 _Z_+I [gA cos g(_-70) - wB cos w(_-70 )] (IVo2-9)

If _0 were identically zero, then fo(_) would be a solution

to (IVol-4)o This is not the case, so we must find a distribution

function fl(_) satisfying

fi(_)d_
+K F fi(_)d_ K_1 _0

1 - ]k +-_ -'_,-_
IVo2-10)

where

Ni : I fl({) d{
i

IV o2- ll

Then f0({) + fl(_) will be the required solution to (IVoi-k)o

A suitable guess for fl(_) is

{fi({): _ sin_ g oosh- i +i_+l)(S-I) J (IV.2-12

Again making the substitution u : cosh-l[(6-1/_+l)(_+i/{-l)] and

using the technique illustrated in (IVo2-4), fl(_) is a solution

to (IV.2-10) if

2 cos 70

C = - sin 70 cos gT0 [gA sin gTo - wB sin wT0]o (IV.2-13

Thus, in dimensionless form, the exact distribution function is
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2RT i i

f({) - Glb _ sin Y0

X {(i + _) sin w(_-70) sinh g_o + (i - i__){2 sin g(g-70) sinh w_0

]sin Y0 cos gY0 g sin 70 - sin g(_-70 ) sin WTo

l }
where

_o cosh-I [_:! itA,]: <_+i)({_i_]

-i _-i

OS_o : cos _+l <

g :[ sin - l-w

The number of dislocations in the pileup is then given by

_TL i _+i i
N =

Glb __g2 _ cos gTo

[g _in _(_-7o) + w si_ g(_-_o) cos _o]

(IV.2-16)

The limiting cases K -->i, 0 and _ _ i; _ check all previous

solutions° One should note that the true distribution function on

the interval [R, L+R] is

1 f({) (m.2-_7)f({)true= B' "
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Figures (IV-3), (IV-4), and (IV-5) show the true distribution

function plotted as a function of tO = P0/L (for fixed K and

variable _ , and vice-versa_, where PO is the distance from the

leading edge of the pileup to any point in the array° The relation

between _ and tO is

t :i + to (o<_ {o<_i) (IVo2-18)

Figure (IV-6) is a three-dimensional view of the surface TL/GIbN as

a function of inclusion size (_) and rigidity (K)° As particle

size decreases (ice°, as _ becomes large), the TL/GIbN surface

approaches the plane TL/GIbN = I/_, independent of the value of Ko

Figures (IV-7) and (IV-8) represent sections through the surface at

constant _ and constant K.

When we take the pure elastic form for _(_), Eqo (IVol-6b),

the only difference in the distribution function obtained is in the

constants A and B (Eqo (IVo2-13) is still valid for C in terms

of A and B) o For _(_) = T[I - K/_2],

cos w70 2RT
A-

sin 70 Glb

B - cos g70 2BT (IVo2-19)

sin 70 Glb

2R_ 2 cos 70

2 cos g70
Glb sin 70

[g sin 70 - cos g70 sin w70 ]
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Figure IV- 3 : f(_o), the dislocation distribution function, vs. _n
for a fixed relative rigidity (I<) and various L/R v

ratios. The pileup is in the softer phase (G2 > GI).

P0 is the distance from the leading edge of the pileup

to any point in the array.

9O



8

.8= 1.05

6

4

Ic = -0.50

2

0

0
0.5 LO ?,o= dO/L

Figure I:V-4:

f(SO), the dislocation distribution function, vs-R[OL/for a fixed relative rigidity (K) and various

ratios. The pileup is in the harder phase (G2 < GI).

91



K--0.25

6

4

2

0

= 0.25

_:=0.75

0 0.5 1.0

Figure YV-5: f(_0 ), the dislocation distribution function, vs. tO
for a fixed L/R ratio and various values of relative

rigidity (#<).
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Figure IV-7: TL/GIbN as a function of relative rigidity (K) for

various L/R ratios.
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Hence, we obtain the solution for the pure elastic form of T(_) by

letting

sin_(_-7o ) sin g(_-7 o)
cos W_o and -+ cos g_o (IVo2-20)

in Eqo (IVo2-14)o N, the number of dislocations in the pileup is then

given by

_T_L _+i 1 [g cos + w cos gY0 cos 70] (IVo2-21_
H = GI b _ cos g_0 wT0

7° The Pileup Stress Field

The substitution u = cosh [6-1 ° _-i

of the superposition integrals

permits an evaluation

L+R

•ij(x,Y) = I Tij(x,y,_) f(_) d_ (_o3-1)
R

by means of contour integration in the complex u = _ + i_ plane°

Expressions for special cases of the stress field are presented below

(for the choice T(_) = T)°
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(a) The shear stress _ along the inclusion interface:
rz

/2T
T = --; _-----

rz sin 70 -y±-K

where

×{sin w(_-y O) [(sinh gv0) cos 8 + sin g(2 - 70) sin @]

+ sin g(_-70) sin e[cosh wv 0 - cos w(_ - 70)]

cos,o[ ]- sin yO cos gyo g -I<2 sin 70 - sin g(_-y0 ) sin WYo

X sinh gv 0 } , (IV.3-2)

= sinh-l['_ -I 8
v0 (8+1) cot _] ,

(_o3-3)

and 8 is the polar angle measured from the center of the inclusion

(Figure rV-la)o

(b) The shear stress

inclusion •

T on the slip plane y = 0 inside the
yz

When i/8 <_ k = x/R <_ i,

T

yz

T

(l-K)si_7o

2 cos 70'() +f
× (1 + _ sin y0 cos gy0 sin 70

g-/l-K 2 sin 70- sin g(_-y0)sin w70 ] cosh g_l

7

+ ---_)
- [sin w(_-yO)(1 h2 cosh gql

+ sin g(_-70)(l - i____) }
h2 cosh W_l] ,

97
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where

-i._-i,(_+l]
_l = cosh [_+l),i--/_.] (_Vo5-5)

For

and

-i _ h = x/R _ i/_, the same equation is valid with cosh g_l

cosh W_l replaced by cos gq2 and cos w_2 , respectively, where

-i _/_ _+i
o i _2 = cos {(_+I)(T-T))__,,i _ o (IVo3_4)

Figure (IV-9) shows a three dimensional view of this stress

near the pileup tip as a function of p/L = (I-A)/(_-I) (see Figure

(!V-la)) and inclusion size _o Each of the three stress surfaces

shown corresponds to a different value of relative rigidity (K)o

Figure (IV-10) shows a section taken through Figure (IV-9) at cons_an_ _o

(c) The shear stress T
yz

inclusion (h = x/R i -i)_

on the slip plane y = 0 outside the

T

yz

T

l_-g2 sin 7 0

{ l__K2 2 cos 70
X sin 70 + _ cos gT0 sin 70

× [g I_-K 2 sin 70- sin g(_-70 ) sin wT0 ] sin gao

+ __I)
- [(1 _2 sin w(_-70 ) sin g_o

+ (i - %) sin g(_-70) sin Wao ] } , (ZVo3-7)
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K=o.s

0

0,01

Figure IV-9 : 3-dimensional surfaces showing the shear stress T
yz

on the slip plane y = 0 inside the inclusion close

to the pileup tip as a function of _ and p/L. Each

surface represents a different value of relative rigidity

(K).
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where

o < °0: cos <_J) i_1+l- (:F_.3-8)

When _(_) is taken to be T[I - K/_2], Eqso (IVo3-2), (]Vo5-4) and

(I[Vo3-7) hold provided the substitutions given in Eq° (IV.2-20) are

made°

One readily notes that the expressions for the special stresses

given in (IV.3-2), (IVo3-4) , and (IV.3-7) are extremely cumbersome, and

it is useful to have approximate expressions for the stresses close to

the pileup tip. Consider first the local stresses inside the inclusion

(x 2 2 R2+ y _ ). For K / i (K = i was treated in Chapter II), pro-

vided that the conditions

2R
-->i
p -

IV. 5-9a )

;(4 L}> 1o5g in _i p
IV,3-gb]

are satisfied, these local stresses are found to be

x___z_- -A(_,_) _irA_

T {L L}sm!

sin gq_,

cos g@,

(Iv_3-1o)

where
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A(K,p) =
sin w(_-70 ) sin WTo + w#l-K 2 cos 70 sin 70

(I-K) sin 70 cos gTo

A(K,_) i+_-- cos WFO sin wT0 + w sin F0 cos 70

= _ sin 70 cos gT0

if _(_) = _[1 - K/X 2] (IV_. 3-11b)

is the polar angle in the second phase relative to the pileup tip_

and 0 is the associated radius vector (Figure IV-la)° As g -->i,

the stresses diverge logarithmically.

Now let us examine Eqs. (IV.3-10) for cases in which the in-

clusion diameter 2R is much greater and much less than the slip

line length L. Since

4 L 4R L

_+--_ p - L+2R p ' (IV,3-12)

4 L 2L L
---- _-- wh_n -- < 2,
p+l p p R

and (IV.3-13)

4 L 4R L
---- _-- when > 2
_+1 p p R "

Hence, when conditions (IV.5-9a) and (IV.5-9b) are satisfied, inside

the inclusion

or

g
xz _A(K, _5)(2L) sin g_
T P

_z__ _ A_ _(2T')g-.., K,,_, cos g_
P

L

< 2 (:rv.3-14)

102



T

xz _ -A(K,_
T

T

yz _ -A(K,
T

-A(K,_

_R {_g sin g_

-_ sin g_

L
-->2
R

4R I

(_rVo3-15)

where

2 sin _-_- < 1 (IV.3-16)O<g =

One notes that

(a) The exponent g

only upon the ratio

is independent of particle size _nd depends

G2/G I"

(b) In the case of particles which are large relative to the slip line

length_ particle size affects stresses only through the constant

A(K,_). The relevant term in the expression for local stress intensi-

fication is (2L/p) g, and this is the same term which would appear if

the second phase were semi-infiniteo This is physically reasonable

since when L/R << 2, the second phase is extremely planar near the

pileup tip, and the leading dislocations in the pileup do not sense

the finite size of the inclusion°
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(c) In the case of particles which are small relative to the slip

line length, the relevant term in the expression for the local stresses

is

_R '4R)g L 4R_- =_7{ _- _g-l/2 (_.3-17)

The factor _L/p is the same ten. which appears in the calculations

based upon a single phase medium (no inclusion present), so that the

term (4R/p) g-I/2 may be viewed as a correction term introduced by

the finite size and rigidity of the second phase. When L/R _ 2,

_, and 70 _0 so that

N w = sin

(_v.3_18)

for inclusions whose diameters are much smaller than the slip line

length°

We can use Eqso (IVo3-14) and (IV.3-15) to illustrate size

and rigidity effects upon the local stresses by two sample calcula-

tions which will be compared with similar calculations assuming the

absence of the inclusion. We shall, of course, neglect any effects

of plastic relaxation of the pileup stresses. Since the maximum

shear stress acting along any plane occurs upon the slip plane y = O,

we shall concern ourselves with the stress
yzly=O"
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Case i. L _ 10 -4 cm, R _ 2 x 10 -4 cm (a typical cermet)

(i)
G2

_ 5_

GI

2
K = u

3

(iii)

{ 17o5}yz - 7°2

L.5

K = 0 (no inclusion)

for p =

10-7 }

i0-6

i0-5

cm

-_ _ - 14

_ 4°5

Thus, when

for

I0_7

p = i0-6

i0-5

cm o

K > O, the local stresses in large particles may

be lower than those predicted by homogeneous elasticity calculations

o

by a factor of 2 or 3 when p _ IOA° This is essentially a rigidity

effect, since R, the particle siz% has little effect upon the local

stresses when L/R < 2o We shall not consider K < 0 in this calcu-

lationo

Case 2 L _ _ 10 -5 cm, R _ 5 x 10 -6o cm

The essential difference between the local stress field in the

inclusion and that in a homogeneous single phase medium is given by the

correction factor (4R/p) g-I/2 in Eqo (IVo3-15)o This correction

factor is plotted in Figure (!V-If) for two different size particles

and two different relative rigidities° The correction factor becomes

appreciable at distances p from the pileup tip which are less than
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o

IOAo However, it is doubtful that much physical significance can be

attached to this range of p values° At distances from the pileup tip

o

which are physically significant (p > 25A), when K > O, the correction

factor may vary from about i/2 to 1/3 , so that the local stresses in

the inclusion are about 2 or 3 times lower than those predicted by homo-

geneous elasticity calculations.

When discussing the stress field off the slip plane, there is

an additional correction from homogeneous elasticity theory due _o the

angular functions sin g_ and cos g_. (Note: when K = 0, g = 1/2,

and when K > O, g < 1/2.) One also notes that the constant A(K,_)

given by (l_o3-11a) or (ZVo3-1ib) and (IV°3-18) becomes large when

K -->1o However, as K _+ i, g _ 0 and the condition (iVo3-9b) will be

satisfied only for values of p which are too small to be of physical

o

importance (i°eo_ p < !.0A)o When L/R >_> 2, for example, as K -_ i

_he values of p for which (IVo3-9b) is satisfied yield a. correction

factor ('_R/p) g-I/2 whose magnitude is small enough to offset the con-

tribution of A(K,_) as given by (IV°3-18). In other words one may

say that the contribution of the singular terms to the stresses in the

inclusion is appreciable only over a distance p* given by

--_sin _ _ in _i p* _ 1.5 o IVo5-19).

Hence, as the inclusion becomes more rigid relative to the matrix, K

increases, and p*, the distance over which the singular stresses are

important, decreases°
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Figure IV-II : The "correction factor" for the local stresses in the

second phase as a function of P for two particles of

different size and different relative rigidities.
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Proceeding in a similar manner and neglecting any effects of

plastic relaxation, one may also deduce expressions for the local

stresses in the matrix° Defining the constant B(K,_) by

sin w(_-70 ) sin wT0 + -_Z_g 2 w cos 70 sin 70

sin 70 cos g70

IV o5-20a

mK,_) =
cos WT0 sin w70 + w cos 70 sin 70

sin 70 cos g70

if _(_) = _[1 - K/_,2] , ZVo5-2ob)

the local stresses in the matrix are

Or

x.___z_ _ B(K,_) sgn(y) Icos g(_-q0) I
T

--_ _ - B_ K, _ J isin g(_-q)) I
T

L<2
R

J

(TVo3-21 )

x__z_ -B(K,_) L (i _ -- sgn(y) Icos g(_-q0) l
T p

T 2R
_vz _ _ B(K,_ <l + -- > Isin g(_-m) l

L>2 >
R

lo8



The effects of relative inclusion rigidity and inclusion size

upon the local stresses near the pileup tip are best understood by

invoking the concept of image dislocation forces. When K _ O, decreasing

the inclusion size effectively decreases the repulsive image forces near

the pileup tip by allowing the giant image dislocation at the origin

(Figure IV-ib) to partially cancel out the effect of the image pileup°

Thus_ the distribution of dislocations near the pileup tip is increased,

and local stresses in the second phase increase as inclusion size

decreases° When K _ 0, decreasing the particle size decreases the

attractive image forces near the pileup tip_ and the same reasoning

allows us to conclude that the local stresses should decrease with

decreasing particle size° These conclusions are borne out by Figure

(IV-9)° The effect of relative rigidity (K) is explained in the same

fashion° Local stresses always decrease as the second phase rigidity

increases° An increase in K

i) increases the repulsive image forces near the pileup tip when

K_0

2) decreases the attractive image forces near the pileup tip when

K _ Oo

In both cases the net effect of an increase in rigidity is to decrease

the distribution of pileup dislocations near the inclusion-matrix inter-

face and thus lower the local stresses generated by the array°
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4. The Circular Hole (K = -i)

When K = -I., the second phase becomes a circular holeo Using

L'Hospital's rule in Eqo (IVo2-14), the true distribution function for

the hole becomes

f(_) = 2_" ii! __ + sin -I

_-_ _2 2 _+l
-J(_-_)(_- ll_)

2_ <-I
zv.4-2)

The distribution function corresponding to (_o4-I) is shown in Fi_are

(IV-.12) for different L/R ratios, and one notes that for the hole

the distribution function is bounded at both ends of the array° As

°_i (ioeo, R _ and the interface becomes a free surface) the dis-

tribution function becomes zero° In reality the integral equation

(IVol-k) does not appear to have an admissible solution for K = -i,

R ._ (see also Chapter III, Eq° (IIl.!-lO))o

The shear stress on the slip plane y : 0 outside the hole

(_.: x/si -i) is

},-i _-70
Ty z = T i + _2

_) °o }]/'(_-)_) (1/_- _) - (1- A2 _ , (IVo4-5)

where a0

(zv-13).

is defined by (IVo5-8)o This stress is shown in Figure

Ii0



2.0

1.0

K=-I (HOLE)

0

0 0.5 1.0

.8 --1.05

IV-12: f(_0 ), the dislocation distribution function for a circular

hole, vs. t0 for various values of L/R.
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CHAPTER V

AN IN_'INTTE SEQUENCE OF PARALLEL SCPEW DISLOCATION ARRAYS

PILED UP AGAINST AN ELASTIC HALF-PLANE OF FINITE RIGIDITY

Io Analysis

We again focus our attention upon the bimetallic medium

discussed in Chapter IIl, ioe_, two elastic half planes of different

shear moduli welded together at x = 0o However, instead of restrict-

ing ourselves to a single slip band on the plane y = 0 (in x > 0),

we envisage an infinite sentence of linear screw dislocation arrays

lying on the planes y = ÷_nh, where n = 0, _ i, _ 2, ooo (Figure V-I),_

Each. array is of length L and contains N right-hand screw disloca,-

tions of Burgers _ vector bo The effective applied shear stress causing

the arrays to pile up against the weld is _ = -To Since each array
yz

induces an image array in x _ 0 of N screws of strength Kb dis-

tributed over [-L, 0)_ the stress field in the matrix (× > 0) is

equivalent to that of the real arrays and the image system depicted

in Figure V-Io

Because _he situation is translationally invarian_ with respect

to _he transformation Y_ = Y cMsh, where s is an integer (ioeo, the

distribution of dislocations in any one slip band is the same on all

slip planes), we need only consider the static equilibrium condition

for one array° For convenience we choose the slip plane y = 0o
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® ®

G I

mm

,[

---_X

(_) REAL SCREW DISLOCATION OF
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STRENGTH

Kb

b

Figure V- i : An infinite sequence of parallel screw slip bands

stacked against an elastic half-plane of finite

rigidity. The induced image arrays are also depicted.
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Invoking the approximation of continuously distributed dis-

locations, the dislocation distribution function on any slip plane must

satisfy

Glb _ ,z L f(t) ix-t) dt + M

n,=-_ 0 (x-t + n::-_

L f(t) dt (x+t)_

S- )2 2"_ j :0 (x+t + n h

_o (Vol-l)

Defining the dimensionless parameters

X x. H =:L _" : L ' '{ :L'

and interchanging the operations of summation and. integration, we must

solve

i _o i

I _ I 2_

+ K S f(_) d{(A+{) _ .2 2 2 - Glb °
V o1-2)

But (57)

(,__+{.)
n2H2- H cosh_ - in=-_ ("A + _)2 +

_.osh(_(_+t)/_) (VoZ-3)

Further manipulation shows that Eqo (Vol-2) can be rewritten as

ll5



°

I

f(_) d_ I - tanh_

0 ta_h(_/H} - tanh(_/H)

i

+t<f
0

i + tanh(_/H) tanh(_/H) 2HT

f(_) d_ tanh(._/_ + tanh(_/H) = G1---_
(Vol-4)

The end conditions on f(_) are

f(0) unbounded with a weak singularity

_(1): o
(V.l-5)

The solution to Eqo (Vol-k) is (]see Appendix G)

f({) - GI b see g sin -I tanh

t-_nh _/H/ " ;
(Vo>-6)

where

g =_ sin- (Vol-7)

One notes that as H : h/L ->m

tanh _/H I

'

sec[g sin-l(tanh _)] -_l,

and we recover the single slip band solution (Chapter III).

(V-2) shows the distribution function for various values of

at constant relative rigidity K

Figure

H : h/L
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I0

_'=0.5

0 0.5 1.0

t, = --_-x
L

Figure V-2: f(_), the dislocation distribution function, vs. _ for

a fixed relative rigidity and varying slip band separation.
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N, the numberof dislocations in the pileup, is given by

N 2_H tan[g sin-l(tanh _/H)] (V.I-8)

L Glb __ K2

N as a function of H = h/L for different values of K is shown in

Figure (V-3). Upon examining Eq. (V.I-8_ one notes that

(i) when H = h/L < 2 (i.e., the slip band separation is less than

twice the slip line length),

tanh -_ I
H

so that

N _ u

2Th i
• -- (V.l-9)

Glb I+K

Thus, the number of dislocations in each array is proportional to

h, not L; since h < 2L, the slip band interaction has reduced

the number of dislocations in each array (as compared to the

single slip band case).

(2) when H = h/L > 5,

so that

tanh _ _

4TL
N _

Glb
(V.l-lO)

just as in the case of a single slip band (Chapter III).
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Figure V-3: Glb N as a function of K for different slip band

separations.
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2. The Pileup Stress Field

The calculation of the general stress field is rather

difficult. However_ the salient features of the effect of slip band

interaction upon the stresses generated by the arrays may be deduced

from an examination of

(i) the shear stress Ty z on any plane y = nh in the second phase

(x _ 0). For convenience we may choose y = 0.

(2) the interfacial shear _ Translational invariance with
XZlX=0"

respect to the transformation y' = y + sh allows us to restrict

our attentions to either the interval -h/2 ! y ! h/2 or

0 ! y ! h. Considerations of symmetry and translational invari-

ance demand that

h
_xz(X, y = (2n+l) _) = 0, n = 0, + I, + 2, ...

T (xlO, ,
xz n = 0, + i, + 2, ...

(a) The slip plane shear stress

(_ = -x/L > 0)" When _ __ i,

in the second phase

a2
sec[g sln-l(tanh _))

× cosh_g cOsh-I _tanh _/H\tanh _/H > " (v.2-1)

For h _ i, the same expression is valid if

cosh _g cosh -I <tanhtanh_/H/]_JH_
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is replaced by

{g -1 {tanh _/H >}cos cos \tanh _h/H

The term (G2/GI)T cancels out the stress

by the applied shear T = -T in x > 0
yz

-(G2/GI)T induced in

(see_qs. (In.l-3)).

x<O

(b) The interfacial shear • (x = 0):
xZ

paramet er

Defining the dimensionless

: -T sec sin tanh

sinh {g sinh-i < tanh _/HX tan _/H >} (v.2-2)

and

then

When

_2 tanh_h/H_/H }g in _tanh > 1.5

$2 tanh _/_}g in Ltan _1_1/_ > 1.5; I_t < _2 '

(v.2-3)

_yzly=0

TXZ Ix=O _
_( 2hV -T Tf

h
H =--<2

L
(v.2-4)
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Tyzly:oT 1
4 _ I-K

_-xzIx:o_ - [ -V1-K

h

The general stress field close to the pileup tip will be such that

Tij _PJ = _ < 2

f._T _2L_g " H h
_ia _-p-_ ' =Z> 5

(V.2-6)

where p is the radius vector from the pileup tip. Equations (V.2-5)

are reminiscent of the single slip band solution, and this seems reason-

able, for when H = h/L > 5 slip band interaction is rather negligible.

However, when the slip bands are more closely spaced (h/L < 2), the

interaction becomes important, and stress intensification depends on h,

the slip band separation, rather than L, the slip line length. These

conclusions are supported by Eqs. (V.I-9) and (V.I-10)

Equations (V.2-6) show that the stress concentration about the

pileup tips decreases as the slip band separation decreases. At first

glance this may seem unreasonable, since, for _ given distribution of

dislocations, a decrease in h brings the singularities closer

together and intensifies the local stresses. One must remember, how-

ever, that as h decreases, slip band interaction chan_es the distri-

bution of dislocations in the arrays (Figure V-2). When h < 2L,

an appreciable number of dislocations is distributed only over a slip
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line length L' _ h/2 < L, so that stress intensification is related

to L' (and thus h) rather than to L. When h << L, the value of

N given by eq. (V.I-9) will be too small for the continuous distribution

approximation to apply. Since the minimumvalue of N is unity, when

T _ 10-3 to 10-2 GI, b _ 2 x 10-8 cm, wemust certainly require that

h be greater than 10-5 to 10-6 cmif the continuous distribution

approximation is to be valid.

The above model maybe taken as a rough approximation to a

work-hardening material in which the plasticity is not restricted to

a single slip band. Whenthe individual slip bands in a broadened glide

band are closely spaced, the interfacial shear is short range (i.e.,

T is zero at y = + (2n+l) h/2) Thus, closely spaced slipXZIx=O -- "
bands maypromote the fonnation of a series of fine cracks in the

second phase, rather than interfacial fracture. Of course, in a real

material the sequence of slip bands will be finite, so that somewhat

larger stresses can occur near the tips of the top and bottom arrays.

Unfortunately, the finite sequenceof slip bands cannot be treated in

closed form by the continuous distribution approximation.
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CHAPTER VI

AN EDGE DISLOCATION PILEUP AGAINST AN ELASTIC HALF-PLANE

i. Analysis

Although the general problem of an edge dislocation array

piled up against an elastic half-plane has not been treated in closed

form, it is of interest to formulate the problem via the continuous

distribution approach and to note the differences between the edge array

and the screw array problem (Chapter III). We consider the identical

problem discussed in Chapter III, with the array of right-hand screw

dislocations replaced by an array of positive edge dislocations. Using

the stress functions of Dundurs and Sendeckyj, (12) the continuous dis-

location distribution formulation of the static equilibrium condition

requires that the dislocation distribution function, f(t) satisfy

L L i

i' f(t)dt + _j_ f(t)dt (d 2 d2 _f f(t) dt_ x-t x+t + 2A 3x _ + x
., dx 2 x+t
0 0 0

-- GIb ; (VI.I-1)

where

f(0) unbounded with a weak singularity;

f(L) = 0;
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i- P
A -

I+PK
i

K 2 - I_KI
B-

K 2 + p

G2

P - G1 _ (VI.l-2)

JKi= 3-4v i , i = i, 2,

v.= Poisson's ratio of the ith phase
i

constant.T = -_ kapp±le_) =
xy

The first term on the left side of (VI.I-I) is the usual term which

appears in single phase calculationsl the last three terms effectively

represent image arrays of edge monopoles, dipoles and quadrupoles,

respectively, distributed on [-L, 0).

Equation (VI.I-I) is a singular integro-differential equation

for the distribution function f(t). Its solution is readily apparent

for only one special case, that being when G2 = G I. If G2 = GI,

P = i and A = O, so that (VI.I-I) reduces to

L _ l-v i_ f 2_(I-Vl)T
f(t) dt + i i f(t) dt

J x-t _ I-V 2 x+t - Glb
0 0

(v1.1-3)

Using the results of Chapter III, the solution to (VI.I-3) is given by

Eq. (111.1-4)with K replaced by [(l-Vl)/(l-v 2) -i)/2 and
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replaced by (l-Vl)T. The parameter g, which dictates the strength of

the stress singularity at the pileup tip_ is then given by

g= ] 1- 2/ "
(VI.I-4)

Since g = 1/2 only if wI = v2 (perfectly identical half-planes),

even if G2 = GI_ the pileup tip stress singularity cannot be of the

inverse square root type (19) when v I / w2.

For A / 0 (G2 / G I) the author offers the following as a

possible method of attacking Eq. (VI.I-I). By defining

2_(1-Vl):

f(t)- GIb f0(t),

the edge problem will be solved if a function

satisfying

fo({)

(VI.I-5)

can be found

Ifo(_ _)d{ { 2A d d )}jl fo (_) d_

0 0

= i (VI.I-6)

Now we can rewrite (VI.I-6) as

1, f° (_;) at ;_, .,
(VI.I-7)

126



where g is the self-adjoint linear differential operator

_3 J_) + 3A-B (VI.I-8)

If we now construct the Green's function G(_ _') for £ subject

to the end conditions

G(0j h') may be unbounded with a weak singularity

a(l_ _') = o

and if

then

i fo({) d{
lim G(X;X') _ h+_ - 0 ,

0

i

_ fo({) d{
., X'+_
0

i

+ I(i) L_dG(h_h')}hdR=i + I___2A_ hG(;_jh') dR

O

0

(VI.I-9)

where

1 fo ({;) d{P
I(1) =] 1 +

"o

= constant (VI.I-10)

Now when the respective elastic constants are such that

-I < B/A < 3 (one may note that B/A is always > 0 when G2/G I

lies outside the interval [K2/KI, i]), the appropriate Green's function,

G(kjk' ) is
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, i -l-p -i+_]
a(X;X ) = _ x-l+_[X ' - X' ;

i

= _ R'-I+P[R -1-_ h-l+_] ;

h<h'

h>h'

(Vl.l-ll)

where

so that

i yl + B/A=_

{da(X_X')}Z : -x'-l+_ah =i

i

I hG(h_h') d%, i [k '-l+Z- i]
-- 2

0 i-_

(VI.I-12)

(Vl.l-13)

Thus, Eq. (Vl.l-9) may be written as

i fo(_) d_ i i l+p• h+{ I(1) X-I+P + 2/I 2 IX-

-% i-_

- i]

i i f°({) _{

if x, a(x;x,)_x,_o '-_2A h

0

(VI. 1-14)

Now since G(h;h') behaves as h -I+_ as h _ O, Eq. (VI.I-14) leads

us to suspect that

0

as X _0 . (Vl.l-15)

If the above argument is valid, then, based upon the results

obtained for the corresponding screw array problem, one might intuitively
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expect that the stress field in the vicinity of the pileup tip is of

the form

i-_T

Ti.__ (_) , -1 < B/A< 3 (VI.1-16)

No rigorous proof of the above statements can be given at this time.

It is hoped that the above analysis has lent some insight into the

complicated plane strain dislocation array problem. If (VI.I-16) is

true, it illustrates the power of the continuously distributed dislo-

cation approach, since the stress field near thepileup tip can be

surmised without effecting an actual solution for f(_). We note two

special cases:

(1) o2/_1 --o (x --o

(2) G2/aI -_

a free surface)

i
i-_ =i 0.293

(rigid second phase)

i - _ = i- _ +KI ,

so that if v I _ 1/5,

I - _ _ 0.03

When B/A >> 3 (i.e., when G2 _ GI) , A is close to zero,

so that the image multipole forces are small relative to the image

monopole forces. Thus, the stress singularity at the pileup tip should

be dictated approximately by Eq. (VI.I-4).
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2. The Pileup Stress Field

Provided that one can solve for f0(_), the pileup stress field

can be expressed in terms of only two integrals and their derivatives:

and

fo(_) d_
Ii(_'_)-- )2 2

o (_-_ +_

i (__{)fo({)d{
I2(X'n) = f 2

o (___2).

(VI.2-1)

where X and _ are the dimensionless coordinates

x Z (VI.2-2)
L' _ L

Apart from simple multiplicative constants the exact stress field in

the second phase (k < 0) can be expressed as:

Oxx(X,_]) ~ - [(I+A)K I + (I+B)]T] - _ (B-A)T] [2 + X + N ]

2 _ ] } ii(_,_ )- _ (1-B)_[l + N (vi.2-3)

Gyy(h,_]) ~ [-(I-A)K 1 + I-B]_ - _ (B-A)T] [2 + 9, _, + _] ]

+ _ (1-B)n [2 + n ] Ii(}',n) • (V1.2-4)
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2 2 (B-A)] r2(>,,,1)"_xy~ [(_l + l) +T

-_ (B-A:) [>, + 7,-__ -1-'
.q2 ___] ll(h,q)_ " (vz.2-5)

One can deduce similar expressions for the stresses in the matrix

(k > O) which involve not only ll(k,q) and 12(k,h), but also

Zl(-X,_) and z2(->,,_).
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CHAPTER VII

DISCUSSION

lo The Hall-Petch Relation

Numerous investigators have reported that the grain size

dependence of the yield stress of a polycrystal obeys a Hall-

Petch (38'39) relation, i.e.,

T = T. + k d-I/2
y l y

T = flow stress of the polycrystal
Y

T. = flow stress extrapolated to infinite grain size
i

where

(VII.l-l)

d = average grain diameter

11 T!

k = an unpinning parameter or measure of the dislocation
Y

locking.

A simple derivation of the Hall-Petch relation is as follows. Consider

that yielding has occurred in one grain of a polycrystal, such that

slip dislocations have piled up at the grain boundary. If slip is to

occur in the grain adjacent to the pileup, one argues that the local

stresses generated by the pileup must be high enough to activate dis-

location sources in the neighboring grain. If these sources are located

a mean distance r* from the pileup tip, and if _* is the critical

shear stress at which a source becomes operative, then, using the
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expressions for the local stresses about a screw or edge dislocation

pileup in a single phase material, the condition for continued slip

becomes

(T - Ti) _ = T* • (VII°l-2)

The effective shear stress creating the original pileup of length L

is taken to be the difference between _, the applied shear, and Ti,

the lattice friction stress resisting dislocation motion. Rearrange-

ment gives

+ y-5)  -1/2
T = Ti (vii,l-3)

Assuming L to be proportional to the mean grain diameter (say

L _ d/2) and identifying

(VII.I-4)
Y

one arrives at the Hall-Petch relation.

Gay, Hirsch, and Kelly (40) and Embury, Keh, and Fischer (41)

have shown that a Hall-Petch equation may apply to materials exhibiting

a substructure, if one interprets d as the mean spacing of sub-

structural barriers. Ga_ et al. proposed that the pileup model for

source activation is still valid, but that the sources are activated

in the vicinity of the barrier, whereas Embury, et al., questioned the

validity of the EFN pileup calculations when the specific nature of

!

the barrier was not taken into account.
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The treatments presented in this dissertation have made

allowances for particular types of barriers. Consider the samemodel

for yielding of a polycrystal used to develop (VII.I-3) with the

exception that, because of orientation differences, the grain adjacent

to the pileup is assigned a shear modulus G which differs from that
2

of the yielded grain, GI. Approximating the two grain configuration

by the bimetal discussed in Chapter III, and using the local stresses

associated with a linear screw array in the bimetal, one predicts

yielding to occur when

where

K --

G2 - GI

G 2 + GI '

(VlIol-6)

0 < g : _ sin < i

Identifying L as some fraction of the grain size leads to a d-g

dependence of the yield stress, with

ky _-_ (i-,<) T*(r*) g (VIIol-7)

A proper treatment of this problem should account for the statistical

nature of the two-grain configuration. That is to say, if the

initially yielded grain is oriented most favorably for slip, what,
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on the averag% is a suitable value for the shear modulus_ G2_ of the

adjacent grain? The parameters g and K must then be characterized

by g and g_ their average values obtained from a proper statistical

treatment of the problem° Becauseof scatter commonto data plotted

on Petch diagrams, it seemsdoubtful that macroscopic flow stress

measurementsalone can ever resolve the correct grain size power lawo

Whenconsidering the appropriate Hall-Petch relation for

materials of high stacking fault energy or materials deforming at

temperatures high enoughto permit dislocation cross slip to occur_

the single pileup configuration maybe a poor approximation to the

dislocation distribution actually present° Replacing the single pileup

model for yielding by the broadened glide band model of Chapter V

(parallel screw slip bands separated by a distance h < 2L), one arrives

at the relation

i b-Tf (VIIol-8)

Because the local stresses of the broadened glide band are short range

when h < 2L, r* must be small if (VII.I-8) is to apply (ioeo,

only grain boundary sources may be operated). Since h, the slip band

separation should be independent of grain size, the yield stress will

depend upon grain size through T*, the stress required to operate a

grain boundary source, and r* (since grain size may dictate the

number and spacing of the grain boundary sources).
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Metallographic studies of manymulti-phase materials reveal

secondphase particles or inclusions segregated at grain boundaries.

If we approximate the segregated secondphases as being of circular

cross section (radius R < L/2) and of shear modulus G2 (assumeall

grains are of shear modulus GI) , and if we imagine the operative

sourcesto be associated with either the grain boundaries and/or the

segregated particles, then the local stresses derived in Chapter IV

imply a Hall-Petch type relation of the form

+ <l + } (VIiol-9)T :_i B(K,_) 7 T °

B(K,_) is the size rigidity factor given by either Eq. (IVo3-20a) or

(2)

(i)

T - T.i _ T*_7 ° (Vllol-lO)

The grain size dependence of the yield stress is then dependent upon

the T*-R-L-d relationship°

T*, of course, will depend upon the mechanistic aspects of source

activation at the grain boundary (grain boundary ledges or sources

associated with the particle-matrix interface)°

R, the average size of the segregated second phases, is dependent

upon the type of heat treatment used to produce the material

configuration and upon the kinetics of nucleation and growth of

second phases at the grain boundaries° R may depend upon d

if diffusion is important during segregation.
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(3) L, the slip line length, is certainly limited by the grain size

but may be more closely associated with smaller substructural

barriers such as _0' the mean spacing of small particles dis-

persed within the grains°

d,

At the present time good experimental data indicating the proper

connections between R and L and substructural variables such as

d or _0 is lacking.

It is of interest to compare the values of k predicted by
Y

Eqo (VIIol-3) , the conventional Petch relation, and Eq° (VIIol-9)o

Assuming that the entire grain size dependence of the yield stress is

contained in L -I/2, one finds that when L/R > 2,

k (conventional)
y-
k (two. phase)
Y

(VlSo1-11)

where r_ and r_ are the distances from the pileup tips to the dis-

location sources in the single phase and the two phase materials,

respectively° If the sources are grain boundary sources, so that

r_ _ r_ < 4R,

k .(conventional)

k _(two phase)

4R g-i/2

--2(l-g) (7) (VlIol-12)

Figure (IV-If) shows that [4R/r*] g-I/2 typically varies between i/2

o o

and 1/3 when 20A < r* < IOOA, so that hard second phases segregated

at grain boundaries should raise k by a factor of about 2 or 3°
Y
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If r_ is associated with a grain boundary source or a particle source,

and _ is associated with a source away from the grain boundary_ then

k (conventional) ,,4R)g-i/2 r*1 1/2Y 2(1-g (VIIol-13 
k (two phase) _ _2

o o

If _2 _ i0 - 20A and r_ _ i00 - 200A, (_/r_) may be on the order

of 3-5, so that k would be unchanged or slightly lowered by segre-
Y

gation effects°

Chou (42) has considered yet another type barrier for the

pileup model. A modified EFN calculation considering an edge disloca-

tion slip band blocked by an edge dislocation whose Burgers' vector

differs from that of the slip dislocations coupled with a consideration

of the forces exerted on the locking dislocation yield a Hall-Perch type

relation with a k value which may be substantially different from
Y

that normally predicted.

The Hall-Petch yield stress-substructural size relation is

attractive because of its apparent simplicity° Because of the variety

of possibilities for such relations_ however, one must exercise caution

when attempting to extract meaningful quantitative interpretations

from such an analysis. Absolute or relative k values can be meaning-
Y

ful only if the relation between the mechanistics of yielding and the

important substructural variables is known°
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2o Relaxation of the Pileup Stresses by Fracture or Cross-slip

We now consider three possible modes of relaxing the stresses

generated by dislocation pileups at second phase particles or inclusions_

(i) Initiation of fracture in the second phase ahead of the pileup°

2) Fracture of the second phase-matrix interface.

3) Cross slip of the leading pileup dislocations around the second

phase.

Relaxation by yielding inside the second phase will not be considered°

In most multiphase materials of technological importance the second

phases present are of a higher modulus and have a higher yield stress

than the matrix in which they are dispersed. Thus, if we associate

either a high yield stress or a low mobile dislocation density with

second phases which are more rigid than the matrix, relaxation by

particle or inclusion yielding need not be a primary consideration°

We will also confine our attentions to second phases which are large

enough to be incoherent with the matrix, for it has been shown that

small coherent precipitates (particles whose mean radius R is less

O

than about 75A) may be sheared by single dislocations, _43j thus

invalidating a pileup model at the outset°

It must be statedthat what follows is essentially an "ex post

facto" argument, since relaxation during pileup formation has not been

considered (the mathematics is too complex without this restriction)°

A second feature to note is that the following discussion will consider

the formulation of static criteria for the occurrence of relaxation°
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In reality the dominant relaxation modemaybe dependent on dynamic

considerations° That is to say_ the true relaxation modemaynot be

that modewhich is most favorable in terms of static stress or

energetic considerations_ but maybe that modewhich can best relieve

the pileup stresses in the shortest time interval° Although the

existing dynamical dislocation theory, generally attributed to Gilman,

has enjoyed somesuccess whenapplied to macroscopic yielding phenomena,

the author is skeptical of applying the theory to the internal stress

problems to be discussed here°

The question of relaxation by f_acture of either the second

phase or the second phase-matrix interface is complicated by the fact

that once the pileup tip touches the second phase the stress singularity

is no longer of the inverse square root variety, Joeo,

T.. _ _p-g , 0 < g < i , (VIIo2-1)
m3

where p is the radius vector from the pileup tip to any point in the

second phase. Smith(36'44)-- has examinedcrack nucleation ahead of a

slip band in a single phase material by using Irwin's stationary

energy criterion° This criterion effectively allows one to express

the condition for stationary values of the total energy associated

with an elastic crack solely from a knowledge of local_conditions

near the crack tip°

on the plane y = 0

of a screw pileup in

Figure (VII-I).

Consider the nucleation of a crack of length 5c

in the region x < 0 (shear modulus G2) ahead

x _ 0 (shear modulus GI) as depicted in

The pileup has formed under the application of an
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Figure VII-I: Schematic illustration of microcrack initiation ahead

of a screw dislocation pileup in a bimetallic medium.
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effective longitudinal shear Ty z = - (T - T.),l where T is the

applied shear and T. is the lattice friction stress° The Irwin
i

criterion is obtained by considering the limit as $c _ 0 of the

following expression_

5c 8c

2 f _ d_ : - ! f _y_(_,O)w*(_,O)d_ (VII.2-2)
0 2 0

Y is the effective surface energy of the plane y = 0 in the second

phase, _yz(_,0) is the slip plane shear stress in the second phase

before nucleation of the crack, and w*(_,D) is the relative displace-

ment of the free crack faces. One does not know w*(_,O) unless the

elasticity solution for the slip band-nucleated crack configuration is

known° A continuous di_location distribution approach to such a

problem leads to a set of complex dual singular integral equations

which have been treated only for the case when G2 = GI (Smith(36'44));

to the authorTs knowledge no solution (distributed dislocation approach

or otherwise) to this problem is available at present.

Suppose, however, that we imagine the crack to be nucleated

by the penetration of the original leading pileup dislocations into the

second phase° If the penetrating dislocations initially retain the

same distribution they occupied in the region x > 0_ then (integrating

the second of Eqs° (IIio2-6))

-- _°

w_-(_,.o) - ! 1 (2T,)g (_o__)l-g ° (v-rio2-3)
gGl
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_yz(_,0), as given by Eq. (111.2-4), is

_yz({'°): -(_-_i)_ 2 1-K ( )g (vll°2-4

so that Eqo (VIIo2-2) yields

1(_-_, { 12l+K (2x,)2g _(l-g,2-g)(8o)2-2g
4x_c - 2gol (l_K)}

(V:_I°2-5

where B is the beta function. Examining (VIIo2-5) as 5c tends to

zero, one notes that_

(i) when G2 > GI, 0 < g < 1/2, and the right side of (VIIo2-5) is an

infinitesimal in 5c greater than first order° Since the left

side of (VIIo2-5) is first order in 5c, one predicts that a

crack cannot nucleate when G2 > GIO

(2) when G2 < GI, 1/2 < g < I, and (5c) 2-2g is less than first

order in 5c_ so that crack initiation should always be possible

if G2 < GIO

(3) when G2 = GI, both sides of (VII.2-5) are linear in 5c° Crack

nucleation can occur provided

> _-x_ , (VIIo2-6)
T Ti - ] _L

in agreement with the calculation of Stroh. (18)
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Results (i) and (2) are not entirely reasonable° Intuitively

wemight expect fracture initiation to be more probable in a harder

second phase (since one usually associates a low y and brittle

behavior with hard second phases), and experimental evidence supports

this contention° Neglecting relaxation by plastic flow in the second

phase when G2 < GI maynegate the model used to obtain result (2),

but, as stated previously, this should not be a serious omission when

G2 > GIO Smith has argued that the problem of slip-nucleated cracking

must be approached by applying the Irwin criterion using the appropriate

local stresses and displacements for the slip band-nucleated crack

configuration° This technique assumesfrom the outset that nucleation

is feasible and then examines the stability of the nucleated crack, so

that, in a sense, one still has not dealt rigorously with the nucleation

problem° It would appear that the discontinuous nature of slip-nucleated

cracking at a second phase boundary must be taken into account°

Onemight try to circumvent the complications arising from

taking the limit as 5c _ 0

argum.ents_

(i) Weshould really let

in Eqo (VIIo2-5) by either of the following

5c _ _ b, the Burgers' vector, rather than

let 5c _0o The rationalization here is that (a) this type of

limiting process recognizes the inapplicability of a continuum

calculation near 5c _ O, and that (b) crack nucleation at a

two-phase interface is a discontinuous and irreversible process,

so that the limit 5c _ 0 is unrealistic.
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(2) Alternatively, one may argue that Eq. (VIIo2-5) was obtained by

integrating (VII.2-2) assuming that 7, the effective surface

energy, was a constant. Since 7 is a measure of the work

required to create the new crack surface, it is probably a complex

function of the non-linear force laws describing atomic bonding

in the vicinity of the interface° To obtain a Griffith-Stroh

type fracture initiation criterion from Eqo (VIIo2-2), one need

only assume that 7 = 7(_) such that

6c { _2-2g0 = 7sb °
(VIIo2-7)

This could be achieved by choosing any one of an infinitude of

functional forms for 7(_), eog.,

_'s

~ (b_) 1-2g sin (_c) > (vZ:io2-8)

Either of the above arguments will yield the same fracture initiation

criterion, with 7 s representing an effective surface energy for crack

nucleation. The dependence of 7(_) upon g (and hence upon G2/GI)

is not too unrealistic_ since the atomic bonding in the vicinity of

the interface could be related to G2/GIo

145



Using the above rationalization, the condition for fracture

nucleation in a semi-infinite secondphase is obtained by letting

5c = b in Eqo (VII.2-5) (one should note that the sameanalysis applies

in the case of a circular inclusion when L/R < 2)° Noting that

{ }3/2l+g = tan2 sin g_

the fracture initiation stress TF is given by

where

TF-T i =_ 4GITs
• _L

_2L l-2g

_(g)(%--) , (VIIo2°9)

_(g) = _g tan2(g_/2) sin _K o (VII.2-10)

_(l-g,2-g)

Using a s_milar procedure, when L/R > 2 the fracture initiation

criterion becomes

! 4GIY s
,4R) 1-2g

i - T- _(g)_-C '

_here

(%(g) = _g tan(g_/2)
_(l-g) 2 _(1-g, 2-g)

(VII.2-12)

Now let us define

(VIIo2-13)
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so that TSp is the stress required to nucleate fracture by slip in a

single phase mediumof shear modulus GI and effective surface energy

7sO Then the criteria for fracture initiation in the second phase may be

written as_

TF-_i =4 2_gB(l_g,tan(g_/2)2_g) sin@ TSp(2L)i/2-g-_

L<2 ;
R

= /_g tan(g_/2)

] 2-g)
L>2 .
R

(vxr o2 ih

To illustrate the effect of the presence of a second phase,

consider the case of G2 = 3GI, so that g = 1/3o Equations (Vllo2-1h)

become

TF-T i _ 0°495 _SP -- '

4R }1/6 L > 2TF-T i _ 0°525 _SP _- ' [

Taking L _ 10 -4 cm, b _ 2 × 10 -8

phase requires that

TF -T'l : 1"13 TSp if

= 1°65 TSp if

= 2o30 _SP if

cm, fracture initiation in the second

o

R _ 5OA

o

R _ 500A

o

R _> 5OOOA o
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103 ergs/cm2" _SP is about 50,000For GI _ 1012 dynes/cm2 and 7s

psi° Onenotes that the fracture initiation stresses predicted above

are higher than TSp, the nucleation stress in a single phase material,

and that the fracture initiation stress increases with increasing particle

radius. This is to be expected, since when G2 _ GI, the local stresses

about the tip of a pileup at a circular inclusion (a) are about 2-3

times lower than those predicted by single phase elasticity calculations,

and (b) are larger when the inclusion size is smaller°

The above analysis has neglected the effect of plastic relaxa-

tion of the pileup stresses by cross-slip of the leading pileup disloca-

tions around the second phase° Hence, although equations (V!Io2_14)

predict that fracture initiation is easier in smaller particles (when

G2 _ GI) , it may be that plastic relaxation by cross-slip may also occur

more easily when the particles are smaller° Weshall investigate the

cross slip problem after remarking about the problem of interfacial

fracture initiation°

Initiation of interfacial fracture cannot be analyzed rigorously

in _he samemannerused to discuss particle fracture. Since a nucleated

interracial crack would form obliquely to the original slip band, one

should not suppose that w*(_,O), the displacement field of the "pene-

trating dislocations" nucleating the crack, is known from the calcula-

tions of Chapters IIl and IV. If one does assumethat the penetrating

dislocations retain their initial distribution_ the interfacial fracture

criteria are the sameas Eqs. (VII.2-14) with
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and

tan g_ replaced by sec g_
2 2

_SP replaced by TSp ,

where 7i is the interfacial surface energy. 7i s_ould be dependent

on the interfacial "roughness" and the interfacial atomic bonding.

One would then expect interfacial cracking rather than particle cracking

when Yi csc(g_/2) < 7s , and vice-versa.

We now examine the problem of relaxation by cross slip of the

leading pileup dislocations around a second phase particle or inclusion°

L_ (45) has examined cross slip of a single screw dislocation induced

by the presence of a locked screw dislocation, and we shall employ a

similar technique to discuss cross slip induced by the presence of a

second phase. Problems of this type are closely akin to "scattering

problems"° The essential difference between Li_s problem and that to

be treated here is the following. Since image dislocation forces are

generated by the presence of a second phase in the vicinity of a dis-

location, as the real dislocation moves, the scattering centers (i.e.,

the image dislocations) also move S Li's scattering center was a fixed

dislocation.

Let us first consider the cross slip of a single screw dislo-

cation around an inclusion of circular cross section of radius R

(Figure VII-2)o Consider the applied shear at infinity to be _ = -7,
yz

so that the elastic stress field in the matrix (r > R) due to the

applied shear is
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Figure VII-2: Schematic illustration depicting screw cross-slip

induced by the presence of a second phase particle.
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q[ = --'[

rz
1 + _ sin 8

r

Tez = -_ {i - 2 cos 8
r

(VII.2-15)

where g : (G2-GI)/(G2+GI)o If we now introduce a simgle right hand

screw dislocation into the matrix at (r_@), two image dislocations are

induced at the origin and at (R2/r, 8). The image stress acting at

the position of the real dislocation is

GIbK R2

: ° (VII .2-16'
Tez 2_ r( r2- R2 )

Defining the dimensionless polar radius vector

r

r0 - R ' 1 < r0 < _ , (VII.2-17)

the radial and tangential forces on the real dislocation are given by

F
mr

% I a:- (.i - , cos e +

_b r0 ro(r 2-I)

F e

-_ : (1 +-_) sin e

r0

GIbK
a =

2_RT

(VIlo2-18)
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If, following Li_ we say that the dislocation moves in the direction of

the net force upon it at any point, then its trajectory r0 = ro(e ) is

determined by

de (i + _/r 2) sin e

2 (VZio2-lg)
r0 dro -(i - K/r 2) cos @ + a/(ro(ro-l))

One may numerically construct the trajectories appropriate for different

values of K and ao The trajectories are most easily constructed by

first considering the curve defined by F = O. The "flow field" is
r

shown in Figure (VII-3) for K = 1/2, R = 700b, T _ 10-3G I (ioe°,

a _ 0o125)o The shaded area between the curve F = 0 and the second
r

phase (r 0 = !) defines a region which is inaccessible to the real

dislocation when K > O.

An examination of Figure (VII-3) shows that if K > O, a right

hand screw initially moving on the plane y = 0 in the negative x-di-

rection toward the second phase is attracted to the second phase until

it reaches an equilibrium position at x 0 = x/R given by

(1 - - (vllo2-2o)
Xo( x 0 b _

i )

(When K < O, no such equilibrium position exists, and the screw is

always attracted to the particle°) For the values of K and a used

in Figure (VII-3), x0 _ i.i. If local perturbations in the internal

stress field or temperature fluctuations force the dislocation off the

slip plane y = 0, the dislocation will move (approximately) along the
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F_gure VII- 3 : Screw dislocation cross-slip trajectories around a

circular second phase. A screw originally moving

from right to left on the slip plane y = 0 cross-
slips along the outer boundary of the darkened "zone

of inpenetrability".
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trajectory defined by F = 0 until it has cross sli.pped through an angle
r

8 _ 75 ° and then continue moving along a straight line parallel to

its original slip plane (ioeo, the cross slip path is the boundary of

the zone of impenetrability)° If '_, the applied shear is decreased,

and all other parameters held constant_ a decreases and x increases,
0

so that the curve F = 0 is shifted away from the second phase° The
r

area of the "inaccessible zone" is increased, and_ therefore_ the cross

slipping screw must travel a longer path to move around the particle°

To a good approximation the cross slip trajectory of a dislocation

initially on the plane y = 0 is a quarter arc of a circle of radius

Bx 0 over 0 < iSI < _/2 and then the straight line y = _ Xoo Of

course, the above analysis is valid only when no lattice frictional

stress resists dislocation motion along the cross slip path° When a

retarding friction stress exists, the stress _ due to the applied
rz

shear is not sufficient to cause cross slip over the initial portion

of the path defined by F = O.
r

Let us now consider the cross slip of a dislocation near the

leading edge of a screw dislocation pileup of length L blocked by a

circular inclusion of radius R < L/2 (Figure VII-4). We now assume

the screw array was created by an effective applied shear T - _i'

where _. is the lattice friction stress on y = O_ and that the stress
l

aiding cross slip is the applied stress field plus the stress field of

the dislocation pileup° As a pileup dislocation cross slips off the

plane y = O, its image likewise moves off the plane y = 0 inside

the second phase. Using the expressions for the local stresses of the

154



Y

CROSS-SLIPPING

SCREW

INCLUSION _ 1 7

G2 r "

, 7' , x

MATRIX

GI _ IMAGES OF THE

CROSS- SLIPPING

SCREW

Figure VII-4: Schematic illustration depicting cross-slip of a

screw dislocation out of a screw pileup against a
circular inclusion.
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pileup derived in Chapter IV (we assume that these remain unchanged

when one dislocation and its image leave the slip plane y = O) the

trajectory of the cross-slipping screw is determined by

dr

r m
d@

B(K'_)(_-Ti) {_ <l +_>)g cos(e- g,) sgn(e)

)4-_R[2 <l + 2R gB(K,_)(_-_i 7>} sin(e-g,)+

(vii.2-21)

i_Yiestresses due to the applied shear (Eq° VII._-I5O do not appear in

(VIIo2-21)_ it can be shown that the pileup stresses contain terms

which exactly cancel the applied stress field° Equation (VII.2-21) is

an extremely complex differential equation, since the polar coordinates

relative to the pileup tip, p and 4, are related to the polar co-

ordinates relative to the origin, r and @, by

2 2 2
D = r + R - 2rR cos @ ,

p sin _ = r sin e

(vii°2-22)

If we reason in a manner similar to that in the preceding paragraph_

then we expect the cross slipping screw to initially closely follow

the path defined by F = 0, where F is the net radial force on
r r

the dislocation. The screw can cross slip around the second phase

provided that the tangential shear

friction stress, i.e._ that

can overcome the retarding
rz
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_R 2R gB(K,6)(___i) L [2 (I +-- )] cos(e-g_) > _ 0 < e < _/2
p -- I' '

(viio2-23)

where __ is the lattice friction stress resisting dislocation motion
i

along the cross slip path° If the inequality (VIIo2-23) is not satisfied

at some point 0% e*, _*(a*), then the cross slipping screw comes to

rest° For a dislocation which was initially very close to the leading

edge of the pileup, when 22 ° < e* < 90 °, the factor 2[(i + 2R/0*)] g

is about 2 or 3° Hence, as a conservative estimate, we predict that

a single screw dislocation initially near the leading edge of a pileup

can cross slip around the second phase provided

!

_R Ti i(___i) L >_ 2 B(K,_V " (Viio2-24)

When L/R > 2, B(K,_), as given by either (IVo3-20a) or (IVo3-20b) can

be well approximated by

B(K,6) 2(l-g) , (V!Io2-25)

so that the cross slip criterion becomes

i

L_> (VII°2-26)

If we use (VIIo2-26) as the condition for relaxing the pileup

stresses by cross slip, we are adopting a somewhat conservative criterion.

Essentially we are saying that if a single pileup dislocation cannot

cross slip around the second phase, then cross slip will not be an

effective mode of relaxation. Of course, if many dislocations near
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the pileup tip cross slip simultaneously, then

(i) the trailing dislocations in the cross slip array exert forces

on the leading cross slipping screws which may aid the relaxation

process, and

(2) the local stresses of the pileup diminish (unless new dislocations

are rapidly supplied to the slip band by its source), thus hinder-

_ng the cross slip process°

Since (1) and, (2) act in opposition to one another, (VIIo2-26) may be

a good approximation to the real cross slip criterion° A more rigorous

calculation should include a consideration of both source and cross slip

dynamics° Equation (VIIo2-26) predicts that cross slip becomes a less

effective mode of relaxation as the second phase size increases°

When L/R < 2, the second phase-matrix interface is almost

perpendicular to the screw array_ so that the cross slip path is almost

parallel to the interface° A pileup dislocation must now cross slip a

vertical distance p* above the pileup° Using Eqs° (IIio2-6) we see

that D* must be less than L (and consequently less than R) if the

stress concentration factor (2L/D*) g is to be sufficient to overcome

the cross slip frictional stress° Cross slip associated with second

phases which are large relative to the slip line length will tend to

spread out the initial pileup dislocations into several slip bands

(whose separation is less than the slip line length) which remain blocked

by the second phase°
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Let us now examine the conditions which favor particle fracture

rather than cross-slip as the mode for relaxing the pileup stresses°

Consider first the case of L > 2R. Using Eqso (VIIo2-26) and

(VIIo2-14)_ we see that second phase fracture cannot possibly occur

unless

i

R > I_ tan(g_/2) _s _ 4R) _-g. __ -b- (vzz.2-2?)

Cancelling L-I/2_ which appears on both sides of the inequality, we

can rewrite (VIIo2-27) as

2-g) .b
, (vii°2-28)

an expression which is independent of L (of course R must be

< L/2)o For G I _ 1012 dynes/cm2' _s _ 103 dynes/cm, b _ 2 × 10 -8 cm,

we see that relaxation by fracture initiation in the second phase

requires that

, _ 4R_ g /_g tan(_/2)

T i --_ > 7.4 X 103 (l_g ' 2'g) ' (VIIo2-29)

where _" is in units of ksi Let us set an upper limit of about.
i "

150 ksi for _F; this is a reasonable value for medium strength

materials. In such materials Ti typically varies from i0 ksi (high

temperatures) to 50 ksi (low temperatures) so that the maximum
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difference between _F and T.l is about i00 ksi. The friction stress

resisting cross-slip, _i' should not be very,much different from Ti,

so that it seems reasonable to expect that _ is less than about
l

50 ksio

Let us choose the most favorable set of conditions for which

a low value of
l

-2
and g close to 1/2. Even if we take L to be as large i0as

R _ 10 .3
cm (i0 microns), and G2 =2GI, we find that (VI!o2-29) is

satisfied only if '_! > 55 ksi0
I

Because we cannot satisfy (VII.2-29) for reasonable values of

_! satisfies (VII.2-29), ioeo, R large (but < L/2)

cm,

R, L, and _• l' we are forced to conclude that particle fracture is not

possible when the particle diameter is less than the slip line length°

This is tantamount to saying that cross-slip is a much more effective

mode of relaxation than fracture initiation when L > 2R. Noting that

i

- <2L_ _-g_2 _SP --

g

= 2 W-
, (vzz,2-3o)

when L < 2R the fracture initiation criterion is

_F-Ti
= 2 sin 2_ /_:6 tan(g_/2!

2-g)
(VTT o2-31)

A plot of

in I TF-_i4G 17 s

16o



is linear with slope -g and is depicted in Figure VII-5 for three

values of go

One should note that s_nce

_ i - 3°7 × 106 psi ,

L must be greater than about 3 - 5 × 10-5 cm if _F-_i is to be on

_he order of I00 ksi (Figure VIII-5)o Since the fracture criterion

(V!]o2-31) is valid only when L < 2R, we conclude that fracture can

be initiated only in particles whose diameters are greater than about

1-2 _microns (a typical cermet)°

The conditions favoring fracture initiation in the second phase

and relaxation by cross-slip may be summarized as follows:

Relaxation by particle fracture can occur when

_i L < 2R, and

(wIo2-52)

g_ l_ tan(g_/2) < b _ g
('2) _F-_i - 2 sin -_ _ B(l-g, 2-g)

Relaxation by cross-slip can occur when

L > 2R, and

1

(vIIo2-33)
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One should remember that the fracture initiation criterion

was derived by letting the incremental crack extension, _c, tend to

b, not zero_ as a limit° A rigorous justification of this modification

is not given here° The analysis was presented as a means of circum-

venting difficulties inherent in the discontinuous nature of the fracture

initiation problem° The legitimacy of invoking atomistic arguments

to modify the continuum Griffith-lrwin criterion may be questionable_

nevertheless, until a more rigorous calculation can be performed, an

appeal to atomistics does not seem wholly unwarranted°

5o Concluding Remarks

A summary of the solutions obtained for the stresses generated

by linear screw d_slocation arrays (pileups) near second phases wil_

not be given here_ these have been presented and discussed at length

in Chapters II through Vo It has been shown that the method of con-

tinuously distributed dislocations provides both a natural and an

effective technique for treating slip band stress concentrations in two

phase media, In particular the influence of second phase size and

relative rigidity upon the local pileup stresses has been examined°

The effect of parallel slip band interaction was also studied for the

special multi-array configuration of Chapter Vo The technique is

particularly appealing because it affords a straightforward formulation

of such problems which has incorporated within it the appropriate

continuity conditions at the matrix-second phase interface° In addition

the concept of image dislocation forces pe__its one to develop reason-

ably simple physical interpretations of the results obtained° Inevitably
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one must solve a singular integral equation for the dislocation distri-

bution function_ fortunately, the problems presented in this disserta-

tion could be treated in closed form° This may not be the case when

more complex second phase geometries (eogo, an inclusion of elliptical

cross-section) are chosen°

One may argue_ quite correctly, that the anti-plane strain

elasticity problems discussed here could have been treated by more

standard techniques of potential theory, since such problems require

solving _w = 0 with appropriate continuity conditions on w (the

z-displacement) and its derivatives at the matrix-second phase

interface° T_J.eauthor attempted such an approach, with little success,

to several of the problems presented in this dissertation. This should

not be construed as an effort to claim the superiority of the disloca-

tion approach_ in all probability it is a reflection of the author's

own deficiencies° The real justification for or defense of the utllity

of the distributed dislocation technique is the fact that solutions were

obtained in a logical, straightforward fashion_. Ultimately, of course

the choice of technique is a matter of individual taste°

From the discussion presented in the previous section it is

apparent that more attention should be given to the question of relax-

ation of the pileup stresses,, A realistic treatment of relaxation

by either cross-slip or plastic flow must

i) allow relaxation to occur during pileup formation, and

2) consider the dynamics of dislocation motion°

It. is very probable that these considerations will necessitate the use

of numerical methods°
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APPENDIXA

THESCREWDISLOCATIONINSIDE A CIRCULARINCLUSION

Consider the two complex planes depicted in Figure A-I. The

= x + iy plane may be conformally mappedinto the _ = _ + iq plane

by the transformation _ = R2/_. R is the radius of the circular in-

clusion of shear modulus G2 in the _-plane. The region l_I > R is

the matrix of shear modulus GI. Under the above mapping, points inside

the inclusion in the _-plane are mappedinto the matrix in the C-plane

and points in the _-plane matrix are mappedinside the inclusion in the

_-plane.

Let u = v + iw represent the complex potential describing

the screw dislocation exterior to the circular inclusion in the n-planeo

Thus, w will be the displacement field of the screw_ and v will be

the potential for the analogous electrostatic problem. From Eqs° (1.3-5)

for the screw situated at (t',O) in the _-plane,

R2/ 2 2 R2ul - 2_b [in(C_-t') + K in((Z- t _) - g in (Z]_ x + y >

, 2 2 R2u2 - 2_b [(l-K) in(Cz-t ) + i_K] _ x + y _<

The mapping _ = R-/_

into a screw at (t,0)

the _-plane

(A-l)

transforms the screw at (t',O) in the _-matrix

in the _-inclusion, where t = R2/t ' Now in
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_= X+ iY

G I

Y

SCREW

DISLOCATIO__ 7

(t',O)-

SCREW

= _,+i'9 '9 / DISLOCATION

R_/_ / G2

/
:_ X

Figure A-I : The complex _ = x + iy and _ = _ + i_ planes.

Under the conformal mapping _ = R2/_, a screw dislo-

cation in the n-matrix is mapped into a screw dislo-

cation in the L-inclusion, and vice-versa.
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where j is either i or 2. j = i refers to the S-matrix and the

_-inclusion_ j = 2 refers to the _-inclusion and the _-matrix. Using

the Cauchy-Riemann conditions_

du. R2 du.

-T(J)_z + iT(j)qz = iGj d_ = -i 7 Gj "-_d(%" (A-3)

Considering j = 2,

b i

T(2) + iT(2) : - _2 G2(I-K) 2_ C_-t'- hz Tlz

: _ -_a2(_-_)_ (_/_) (_2/t) "

Thus_ after some manipulation_ one finds that

T(2) G2b(I-K) { _ q }
=- 2 7,2 2hz 2_ (h_t)2 + q +

(2) G2b (I,K ) { h-t _

- I 2 " 2 2 J "_qz 2_ (h-t 2) + q h +

These stresses are derivable from the displacement field

(A-_)

(A-5)

.(2) = _ [(l__:)e I _ (1-K)e + C0],
2_

(A-6)
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where

8 = tan-I _ 8 = tan -I _
i h-t ' h

and CO is an undetermined constant.

For j = i,

-Thz _z = i -_ _2 + (__ (R2/t,) - --(_ . (A-7)

2
Since (Z : R /_, t' = R2/t, separation of the terms in (A-7) into real

and imaginary parts yields

=- _ q +

2 h2 2 2z 2_ (h-t)2 + q + q (_ _ R2/t)2 +

._(i) Glb _ h-t k K(h- R2/t)

- L 2 2 2 + 2
_lz 2_: (h-t) 2 + q k + rl (h - R2/t) 2 + q J

(A-8)

These stresses are derivable from the displacement field

(i) b
2_ {OI - e + KO 2] , (A-9)

where

@2 = tan-i
- R2/t

However, we note that the term -b8/2_ in w (I) corresponds to a screw

dislocation inside the i-inclusion. This is not permissible since the

i-inclusion contains only the real dislocation at (t,O).

add the term +b8/2_ to w (I) and w (2) and we find

Thus, we must
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_(l) b [el+ Ke2} ; x2 2 R2=2_ +q <

_ h2 2 R2w(2) b [(1-K)o 1 + Ko + Co} ; + Tt >2_

(A-10)

[Note: The addition of the term be/2_ to both w (I)

not affect continuity in tangential shear stress across

and w (2) does

k2 2 2+q =R.

A screw dislocation at the origin has no r stress associated with
rz

k2 q2 R2it.] Continuity in the displacement field across + =

requires that

co = K_ . (A-ll)

The stress fields derived from the displacement field given by (A-10)

are then given by Eqs. (1.3-7) in the text. One should note that under

the eonformal transformation the inclusion in the interior screw problem

is of shear modulus GI ; the matrix shear modulus is G2.
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APPENDIX B

INVERSION OF A SINGULAR INTEGRAL EQUATION WITH A SIMPLE CAUCHY KERNEL

Head (26) and Chou (33) have given the following lucid, concise

summary of the techniques described by Muskhelishviii (25) and Mikhlin (46)

for inverting the singular integral equation

_ f(t) dtt-x

D

o(x) (B-l)

If f(t) and o(x) are functions in the Holder classes H* and H,

respectively_ in the interval D, and if D consists of p finite

segments of which at q of the 2p ends f(t) is bounded, then

f(x)_ L o(t!xdt + -Rl(X) ]i/2PP-q-I(X),

(B-2)

provided p-q _ O.

q 2p

Rl(X)--- _[ (x-el); R2(x)--- -[[ (x-e i) (B-3)

i =i i =q+l

Pp_q_l(X) is an arbitrary polynomial of degree J p-q-i with P-I = O;

the e.'s are end points.
1

When p-q < 0 the same solution is valid with

the necessary and sufficient condition
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x a(x) _ = o ;

D

m = O, 1, ...,q-p-1 . (B-4)

In the case of the pileup at the rigid cylindrical inclusion

one must solve

f f(t) dt NR-t =_+

1/_

<

2_RT

Glb

2_R_
l<}k<--_II_<_}k<l

(B-5)

_ne interval D is the single segment [i/_, _] and since f(_) =

f(i/6) = 0 (there are no dislocations at the tail ends of the real and

image pileups), p = i, q = 2, q-p-i = O, p-q < O, R2(Z) = i, and RI(}, )

= (_7_)(Z - I/_)° (B-5) has a solution if (B-4) is satisfied or if

Nf dt 2_P_. f (t-l) dt

# i - ai b _- 1_/_ t (_-t)(t-_ _ (_-t)(t-

(B-6)

(B-6) yields Eq. (II.i-13) in the text, and f(t) is given by

(11o1-15).
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APPENDIXC

EVALUATIONOFTHESTRESSFIELDABOUTA PILEUPAT A RIGID CIRCULARINCLUSION

The most difficult integral to evaluate in the superposition

integral for the stress field involves

-i -!

m) cosh
I : (1 + [2 (x__)2+ ne

i

, (c-l)

where _ x/R, h y/R, and X2 2= = +q <i. Making the transformation

one finds

-i _-i it!_
: oos_ (_Y " _-l' '

where

w'_-i %(ii 2i 2 + 213)I : 2(_-:<_)
D

2 2 2

tIC-2)

12 =I

co

13 =/

u sinh u du

B(u)

u sinh u du

S(u) C(u)

u sinh u du

B(_) [c(u)]2

(c-3)
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_-i l-r 2
s(u)--(coshu + B+I 2

O

× (cosh u + _-i
_+i

+ 2i _A _ >
_+i 2

P

l_r 2
_ci _m >

2 - 2i _+i 2
P P

c(u) =_-lcosh u + Z
_+i

2 h2 2r = + _ .

The integrals are most simply evaluated along the interface

(r = i) or along the slip plane (_ = 0). Consider r = i and

V=fc (cosh 2

2
u sinh u du

L_-lp

(c-4)

where C is the rectangle in the complex u = _ + i_ plane (Figure C-I).

Taking the limit as u 0 _ and applying the Cauchy residue theorem, one

finds

i _ residues of12 = _

2
u sinh u

hu t__l
P

(c-5)

The poles inside the contour C are shown in Figure C-I.
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Figure C-I: The contour C in the complex u = _ + i_ plane

used to evaluate the stress field generated by a

screw pileup at a rigid circular inclusion.
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The result is

70 = cos 15+1 0<70<_-- --_

-l(_-i 2_L_2)C_0 = sinh ,_$_
P

(C-6)

15+1 i 2 + + 70I2 : _-i 2 0 - 5-

P

A similar procedure holds for II and 13, although the inte-

grand in 13 has poles of order 2 at i(_ _ 70). The residues at the

poles of order 2 may be computed according to the method outlined by

Churchill. (47)-- The remaining integrals involving the non-singular

portion of the distribution function are evaluated by either the method

of partial fractions or by a contour integration following the substitu-

tion

u = cosh "_+i _-i"

The above method can be used to calculate the complete stress field in

closed form.
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APPENDIXD

INVERSIONOFTHEINTEGRALEQUATIONASSOCIATEDWITHTHESCREWPILEUPAT

A HALF-PLANEOFFINITE RIGIDITY

The dislocation distribution function, f(t), must be determined

fro_ the integral equation

L L

f f(t) dt + g/ f(t) dt _ 2_,J x-t x+t Glb '
0 0

subject to the end conditions

0 < x < L , (D-I)

f(n)= o

f(0) unbounded with a weak singularity.

(D-2)

Making the substitutions _ = x/L, _ = t/L, _ = l-g, Eq. (D-I) may be

rewritten as

I i

_- _ _÷_ Olb '
0

o<_< I . (D-3)

Since -i _ K _ I, 0 _ _ _ 2. Developing f(_) in a Neumann series

expansion

2_ _ n gn(_) ,f(_) = _ n=O
(D-4)

n
substituting into (D-3), and comparing coefficients of

that
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i go(_)d_ i go(_)d_

0 0

- I D-5)

? gn(_) d_ f gn(_) d_ f gn-l(_)d____ + _+_ - _+_

0 0 0

, n>l D-6)

Equation (D-5) is essentially the equation Chou (33) solved for the rigid

half-plane problem, and its solution is

2 -i(i
go (_) = _ cosh _) D-7)

Combining terms on the left side of (D-6) and making the substitution

= _ leads to

1 gn(_) d_ 1 gn_l(_) d_

o _ <_2-_I o
, n > i . (D-8)

(D-8) may be inverted according to techniques outlined by Muskhelishvili (25)

and Mikhlin (46) (Appendix B) to yield the recursion relation

i i

gn(_) = _ _ f _ d_ f gn-i (s) ds

0 _ 62__2 0 _+s

, n >_ i . (D-9)

In inverting (D-5) and (D~6) we have assumed that go(I) and gn([)

satisfy the same end conditions as f(_) (Eq. (D-2)).

-1
Taking n = l and letting _0 = cosh (i/i) , one finds

2

gl(_) = 5 -_ + g " (D-IO)
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Further use of the recursion formula (D-9) yields

2 2

g2(_) =Tgo (1) -2 +_ -_ +

2 2 2

g5(_) --_g0 (1) -_+g -_+ -_+T •

(D-II)

The calculations leading to Eqs. (D-IO) and (D-II) are extremely lengthy

and, therefore, are not reproduced here.

Thus, it appears that the general term in the Neumann expansion

is
n 2

2n {_0 (2j-l) 2 )gn (_) - (2n+l)_' go (_) I -_ + 4 , n > i .

j=l

(D. 12)

Assuming (D-12) is true (the solution will be verified later),

n-i

Glb ( _n [( $ i}f(_) 2nO _] 1 2110
- (2n*l) _ "I + n:l " + (2J+ )2

j:O

Using No. 839 in Jalley, (37) one may deduce that

(mzs)

82n n-i o2 sinh( sin-18
1 + (2n+l)' I [ + (2j+1)2] = a )

n:l " o'8
j=O

so that when 0 _ _72< i,

(m14)

_ sinh{(l sin-l_ ) cosh-l(_) } • (ml5)
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In order to verify that (D-15) is indeed a solution to (D-3),

-i
one notes that under the transformation v = cosh (I/S)

1 CO

_CO)

i CO

0 -CO

sinh _v sinh v dv

cosh v(_ cosh v-i)

sinh _v sinh v dv

cosh v(_ cosh v+l)

(D-16a)

(D-16b)

where

Considering

2 . -i_2
= -- sln

g

f sinh _v sinh v dvw = cosh v(k cosh v-l)
C

(mlT)

, (mlS)

where C is the indented rectangle in the complex v = w + i_ plane

(Figure D-I), letting v 0 _ CO, e _ O, and applying the Cauchy residue

theorem,

CO

Glb
--CO

OO

sinh _v sinh v dr. ' j_ sinh _v sinh v dv }cosh v(k eosh v-l) + cos g_ cosh v(X cosh v+l)

--CO

sinh (D-19)
Glb _ 2

(Note" Inside C the only pole of the integrand in (D-18_) is at

V : i(_/2).,) Since
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I
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r

Figure D-I : The indented rectangle C in the complex v = _ + i_

plane used to verify the solution for the dislocation

distribution function for a screw pileup against a

half-plane of finite rigidity.
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i sinh i-_ = - sin _g
2 2 = -

COS g_ = 1 - O_ = g

(D-20)

eq. (D-19) combined with (D-16a) and (D-16b) yields the original integral

equation (D-3) identically.
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APPENDIXE

THESTRESSESABOUTA SCREWPILEUPAT A HALF-PLANEOFFINITE RIGIDITY

The _uperposition integral for the shear stress

x<O is

T

XZ

in

L

T _i:--_ f sinh(g(_.c°sh-l(L/t)) dt (E-l)x_ = - - (1.K) y )2 2,x-_ + y0

Making the substitutions

2 2 2 p2 L2, 2PO = _ + _ = / P

v : cosh-t(L/t), TI = y/L, _ =-x/L :

2 2
= x + y _ then

Txz(X,y) - 2_T_1---_ (l+g) %po I0 '
(E-2)

where

OO

r_

i0 =# sinh 6v sinh v dv

Now consider

(S-3)

V = sinh 6v sinh v dv

oc <oosh_ + (_/p)+_(Inl/_)><oo_h_ + (_/p)-i(lnI/P)>

(E-4)

where C is the rectangle in the complex v = _ + i_ plane (Figure E-I),
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-_,o+ i (Tr+g,o) •

-_o ÷ i(Tr-_o) •

- V0

-iT

• _o + i (Trt,O,o)

• _o ÷ i(_'- g,o)

Vo

Figure E-l: The contour C in the complex v = w + i_ plane used

to evaluate the stresses in the second phase ahead of

a screw pileup at a half-plane of finite rigidity.
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Letting v0 _ _ and applying the Cauchy residue theorem,

I0 - 2 2 residues of
sin _g

sinh _v sinh v dv

Inside C the poles of the integrand in (E-4) are at

E-5)

where

v = _0 + i(_ - _0 ), -_0 + i(_ - _0)

-_0 + i(_ + CO) , w0 + i(_ + flO)

cosh _0 cos _0 -

L
-- COS (_

2 p
PO

sinh _0 sin _0 _I L Isin ml= 2 = p

PO

E-6)

E-7)

The solution to Eqs. (E-7) is given by Eqso (111.2-3) in the text.

Evaluating the residues in (E-5) yields the first of Eqs. (III.2-2) in

the text 3 the stress T
yz

In the matrix

in x < 0 is found by a similar technique.

(x > 0), the stress _ may be expressed as
xz

where

T
XZ _ T _ Jl_2 (II + KI2) , (E-8)

2_ PO
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oo

II =/
sinh _v sinh v dv

<_os_v-(>,/_,_,)+i(i,,i/p_>)><co_,--(,,/,:,_>)-i<i,,]/,,_)>
(E-9)

oo

12 = l

--00

and

sinh _v sinh v dv

<_o_v+ (,,/£>+,.(i,,)/P_>><co_v+ (_,/_,_>-i(l_,t/po)>'

}, = ]xK/L.

Considering

(_,-io)

sinh gv sinh v dv

(E-II)

where C' is the reQtangle in the complex v = _ + i_ plane in Figure

(E-2), letting v 0 _, and applying the Cauchy residue theorem, one

finds

II + KI 2 = 2_i Z residues of

sinh _v sinh v dv

Inside C' the poles of the integrand in (E-II) are at

(E-12)

v = --+_0 + i_o

where
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!C

Vo

Figure E-2 : The contour C' in the complex v = _ + i_ plane

used to evaluate the matrix stress field of a screw

pileup at a half-plane of finite rigidity.
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cosh _0 cos _0 = -L cos _ = _ _L cos _ = _i cos(_-_)
P P P

L L L

sinh _0 sin _0 = _" Isin _1 = "_ I sin qOI = "_ Isin(g-q?)l

(_-13)

Evaluating (E-12) is given by (111.2-4) in the text;
, TxZ Tyz

is found by a similar procedure.

(x > 0)
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APPENDIX F

THE DISTRIBUTION FUNCTION FOR THE CIRCULAR INCLUSION OF FINITE RIGIDITY

Consider _ ll(U,h) du, where Ii(u,h ) is defined by Eq.
C

(IV.2-4) in the text_ and C is the indented rectangle in the complex

u = v + i_ plane (Figure IV-2). If we let

Cauchy residue theorem, and choose

K = cos g_ = - cos w_

then

oo oo

ll(U,X) du : } II(U,X ) + K I

v 0 _, e _0, apply the

(F-l)

I2(u,_)du (F-2)

: 2_i _ (residues of Ii(u,X ) at the poles contained

inside C) , (F-3)

where I2(u,_) is defined by Eq. (IV.2-4) in the text. Evaluating the

residues of the integrand, Eqs. (F-2) and (F-3) are equivalent to

fo({)d{

l

fo ({) d{
+K/ i

i _-_

: {_[A sin gY0 Asin g(_-70 ) - B sin w(_-70)],

+ B sin WTo] + _ _2 J

+
2_ cot 70

[gA cos g(_-70) - wB cos w(_-70)] } (F-4)
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where

and fo (_)

require

0<70 = cos i Z_+ll< _, (F-5)

is defined by (IV.2-1).

By comparing Eq. (F-4) with Eqo (IV.I-4) in the text, we then

2RT

A sin g70 + B sin wT0 = _ ,
(F-6)

A sin g(_-7 o) - S _in w(,_-%) = 0

2RTK

Glb

K

},

so that A and B are given by

or

2RT

A - GI b

sin w(_-70 )

sin 70

B __

2R_ sin g(_-70 )

Glb _ sin "y0

A __

2RT cos WTo

Glb sin 70

B __

2RT cos g70

Glb sin 70

•(_) :

- _)
•(_): _(l _2

(F-$a)

(F-Sb

192



Thus, f0(_) is a solution to

f f0(_)d_ +K/ +

{

s o
T'(A) - -- , (F-9)

},

where

NO = ]"
1

fo ({) d{

2_ cot 70

l+K {gA[cos g(_-70) + cos gy0]

and

+ wB[cos wT0 - cos w(_-70)]]

(F-10)

_0 = KN0 - 2_ cot 70[gA cos g(_-70) - wB cos w(_-70)]. (F-I1)

Since

f0 ( _ )

the total distribution function must be given by

where fl({) is a solution to

where

f _-_ +K/ fl(_)d_ KN1 %± - Z +_-
i i _--_

N1 = I fl(_) d
1

, (F-m)

Choosing fl({)

described abov%

obtained.

Lo be given by Eq. (IV.2-12), and using the technique

the exact distribution function f0 ({) + fl (_) is
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APPENDIXG

INVERSIONOFTHEINTEGRALEQUATIONFORTHEINFINITE SEQUENCEOFPARALLEL

SCREWARRAYSPILEDUPAGAINSTA HALF-PIJHTEOFFINITE RIGIDITY

The dislocation distribution function must satisfy

i

f(_) d_
0

i - tanh _ tanh _-_H

tanh _- - tanh H

i I + tanh _ tanh _-_

f H 2HT+ K f(_)d_ _ _ - Gib
0 tanh -_ + tanh H

(G-I)

When K = i, one may combine terms on the left side of (G-I), make the

substitutions

= tanh _-_ _ = tanh _KH ' -f, (G-2)

and convert (G-I) into

tanh 2 (_/h )

(a-3)

This is a simple equation with only a Cauchy kernel and has as a solution

f(_, g=l) 4"r -i tanh(_/H) _ " (G-4)- _Glb cosh < tanh(n/H)
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Using the results of Chapters III and IV_ in order to generate the

general solution from the solution for K = i_ we assume a distribution

function

f(_) = A sinh {g cosh -I Jtanh(_/H) >}\ tanh(_/H)
(a-5)

Under the substitution

u : cosh -I/tanh(_/H) >X tanh(_/H) (G-6)

I

{$ f({)d{ i ¥ tanh(_/H) tanh(_/H) } =

0 tanh(_/H) _ tanh(_/H)

} Zl(U,k)au

(a-7)

f 12(u,°_)du

where

r-

AH _ J
tanh

- 2-_' \
sinh _u sinh u

tanh(_/H) _ tanh(_/H)

cosh v _ tanh(_/H) tanh(_._/H) i.

cosh 2 v - tanh2(_/H) ]

(a-8)

Consider _ Ii(u,_) du where C is the indented rectangle in the
C

complex u : v + i_ plane (Figure G-I)_ letting v 0 _, c -_ 0 and

applying the Cauchy residue theorem,
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Figure G-l: The indented rectangle C in the complex v : _ + i_

plane used to obtain the dislocation distribution

function for an infinite sequence of parallel screw

slip bands piled up against a half-plane of finite

rigidity.
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÷ ii(u,_)du + oos g_ f I2(u,_)_u

= AHi tanh _Z [residues of ll(U,h) at its poles inside C]. (G-9)

Inside C II has only simple poles at

where

Choosing

v : in0, i(_ - n0) (G-10)

-l(tanh_)O!n o:c°s _ ![ ° (G-ll

cos g_ = K (G-12

and evaluating the residues, (G-5) is a solution to (G-I) if

2T _ see[g sin-l(tanh H) ] (G-I 3A - G1 b
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